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Zusammenfassung

Die Messung von Neutronenmultiplizitäten ist eine wichtige Technik zur Bestimmung der Masse
nuklearer Materialien. Sie benötigt genaue Kenntnis der Emissionswahrscheinlichkeit von Spalt-
neutronen. Diese Studie fasst das Verständnis der physikalischen Ursache von Neutronenmulti-
plizitäten zusammen und untersucht deren Implementierung in MCNPX-PoliMi. Insbesondere
werden dabei auch verschiedene Ansätze verglichen, wie die Energie der einfallenden Teilchen zu
berücksichtigen ist.

Um erklären zu können warum Spaltfragmente Neutronen emittieren wird Weisskopfs Ver-
dampfungstheorie aufgegri�en. Sie bestimmt die Emissionswahrscheinlichkeit als Funktion der
Anregungsenergie der Fragmente. Aus der Theorie folgt zudem, mit einigen Zusätzen, eine
Maxwell-Energieverteilung im Schwerpunktsystem für die emittierten Neutronen. Weiterhin wer-
den die Berechnungen von Leachman vorgestellt, welcher empirische Daten nutzt um die Anre-
gungsenergien zu bestimmen und schlie{sslich die Ergebnisse der Verdampfungstheorie zur Er-
mittlung der Multiplizitätsverteilung verwendet.

Mit nur zwei Annahmen zeigt Terrell, dass die Multiplizitäten durch eine Gauÿ-Funktion ange-
nähert werden können. Dies ist die erste von zwei Optionen mit welcher Neutronenmultiplizitäten
in MCNPX-PoliMi simuliert werden können. Für die zweite Option wird angenommen1, dass Zu-
cker und Holdens Auswertung für ein Experiment implementiert ist mit 235U, 238U and 239Pu
im Energiebereich der einfallenden Neutronen zwischen 0 und 10 MeV.

Schlieÿlich folgt, für ein vereinfachtes System, die Entwicklung einer quantitativen Beschrei-
bung der Abweichungen zwischen den Emissionswahrscheinlichkeiten, wie sie von Terrell vorher-
gesagt werden, und jenen Messung von Zucker und Holden. Das Ergebnis dieser Studie deutet
auf eine Abweichung zwischen den beiden in MCNPX-PoliMi implementierten Optionen hin.

1Berichtigung nach Druck: Wie in Abschnitt 3.1 beschrieben, wurde dies durch Enrico Padovani (Polytechnic of
Milan) bestätigt, pers. comm., 26.08.2013.





Abstract

Neutron multiplicity counting is a powerful technique used to determine the mass of nuclear
material. It requires accurate knowledge on the �ssion neutron multiplicity distribution. This
study summarizes the understanding of the physical background of neutron multiplicities and in-
vestigates the implementation in MCNPX-PoliMi. In particular, di�erent approaches to include
the incident particle energy are compared.

To explain why neutrons are emitted from �ssion fragments, Weisskopf's evaporation theory is
revisited. It determines the emission probability as a function of the fragment excitation energy.
With some additions it can be shown that a Maxwellian energy distribution for the neutrons
in the centre of mass system is predicted. Calculations by Leachman are presented, who uses
empirical data to compute the excitations and applies results of the evaporation theory to de-
termine the multiplicity distributions.

By using only two assumptions, Terrell shows that the multiplicities can be approximated
by a Gaussian function. This is the �rst of two options to simulate neutron multiplicities in
MCNPX-PoliMi. The second option is assumed2 to be given by Zucker and Holden's evaluation
of an experiment for 235U, 238U and 239Pu with incident neutron energies between 0 and 10 MeV.

Finally, a quantitative description of the deviations between the multiplicity distributions
predicted by Terrell and those by Zucker and Holden is developed for a simpli�ed system. The
results of this study indicate deviations between both options implemented in MCNPX-PoliMi.

2Note Added in Proof: This was con�rmed by Enrico Padovani (Polytechnic of Milan) and the implementation
is described in Section 3.1, pers. comm., 26.08.2013.
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1 Chapter 1.

Introduction

The measurement of correlated neutrons from nuclear �ssion is a widely used and well estab-
lished practise in the study of nuclear materials [1]. In spontaneous and neutron-induced �ssion
between zero and about six neutrons can be created (higher numbers are considerably less prob-
able). The distribution of their numbers is called the �ssion neutron multiplicity and can be
used to determine the amount of nuclear material present in a sample. This has made the study
of neutron multiplicities very important to the �eld of nuclear Safeguards and in particular also,
for the possible future veri�cation of nuclear weapons disarmament.

Though nuclear weapon arsenals have fallen signi�cantly since their peak during Cold War,
today there are still more than 17.000 warhead in the inventories of the nine de-facto nuclear
weapon states [2]. In order to pursue substantially deeper cuts it is widely considered helpful
to conduct veri�cation measures on warhead dismantlement. A key task in such a veri�cation
scenario is to ensure that the item subject to disarmament is a real nuclear warhead and not a
mock-up. The exact speci�cations on nuclear warhead designs are con�dential; however, in order
to be able to lead to a nuclear explosion, several physical boundaries can be de�ned as attributes
of a warhead. For instance there needs to be a minimum mass of nuclear material present so
that a chain-reaction can be initiated. Since a chain-reaction should not be initiated accidentally,
the amount of spontaneously �ssioning isotopes have to be be reduced. Thus the total mass is
provided mainly by so called �ssile isotopes, which have low spontaneous �ssion yields, but are
readily �ssionable by (low energy) neutrons. Applying the two criteria for example to a modern
plutonium based nuclear weapon this means that one has to verify the presence of more than
500g plutonium in the warhead with an isotopic composition of less then 10% 240Pu (that has
high spontaneous �ssion rates) and more then 90% of the �ssile isotope 239Pu [3, Table 1].

In principal there are three types of radiation emitted from nuclear material, α-particles, γ-
particles and neutrons. The measurement of γ-radiation can be used to determine the isotopic
composition. However, due to attenuation within a sample, γ-particles are not suitable to analyse
the mass � a signi�cant amount of the radiation from inside the sample does can be able to escape
it and thus does not contribute to the measurement. The same holds true for an α-particle which
can be absorbed by singular nucleus under emission of one neutron in an (α, n)-reaction.
Neutron detection may in general be used to �nd the sample mass, but the situation here is

more complex. In passive neutron counting, the neutron count rate depends on the detection
e�ciency (known from calibrations) and three major unknowns: the spontaneous �ssion rate of
the sample (proportional to the mass), the (α, n)-reaction rate and the sample self-multiplication
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2 1. Introduction

[4]. This multiplication describes how many neutrons are created by induced �ssion in addition
to those directly resulting from spontaneous �ssion. For the measurements it is made use of
the fact that (α, n)-reactions produce only one neutron per event, where as in spontaneous and
induced �ssion up to six and more neutrons are (almost) simultaneously created. Thus discrimin-
ation between these neutron sources can be achieved by measurement of the temporal correlation
between detected neutrons. The principle of neutron multiplicity measurements is, in addition
to the total count rate and the correlation, to obtain a third parameter, closely connected to the
multiplicity distribution [4]. Then the mass of spontaneously �ssioning material in the sample
can be calculated. If the isotopic ratio is known from γ-detection it is further possible to de-
termine the mass of 239Pu present.

Since the emission of neutrons is of statistical nature, for a single event one can not know
how many particles are created, based on many events the probability for the creation of a cer-
tain neutron number can be determined. These probabilities are calculated by knowledge of the
physical background and empirical data. It is then even possible to simulate a measurement.
Simply said, the computer takes the roll of �throwing the dice� and counts how many neutrons
are emitted and how many arrive at the detector. A widely distributed computer code used in
nuclear physics is the Monte Carlo N-Particle code MCNP, which can simulate the transport
and reactions of neutrons, gammas and electrons [5]. Earlier version made incorrect physical
assumptions on the multiplicity distributions, there have been several modi�cations to the code
since then. The �rst major improvement concerning the implementation of �ssion multiplicities
is included in MCNP-DSP, which samples from the full multiplicity distribution. Recently, with
the development of MCNPX-PoliMi, it is attempted to add a correlation between the number
and energy of emitted neutrons [6].

The �rst chapter of this study reviews the theory of the �ssion and neutron emission. In analogy
to thermodynamic processes, the discharge of a neutron from a �ssion fragment is regarded as
the particle's evaporation from the nucleon. The associated emission probability is derived.
Finally, two of the earliest and still most widely used approaches to describe the �ssion neutron
multiplicities are presented.
The second chapter focuses on the models and empirical data underlying the simulation of

neutron multiplicities in MCNPX-PoliMi. It analyses how the probabilities for neutron emission
and the associated energies are implemented. Finally, it also compares di�erent implementations
for the induced �ssion neutron multiplicities with a particular focus on their dependence on the
incident neutron energy.



2 Chapter 2.

Theory

2.1. Origin of Nuclear Fission

One of the earliest and most intuitive models to facilitate the understanding of nuclear �ssion
compares the nucleus with a liquid drop. The idea was �rst proposed by Gamow in 1929 for the
atomic nucleus [7] and subsequently further developed by Carl Friedrich von Weizsäcker deriving
the semi-empirical mass Equation [8]; with Bethe and Bacher's inclusion of the pairing energy
it also became known as the Bethe-Weizsäcker mass formula [9]. After the discovery of nuclear
�ssion Bohr and Wheeler, in 1939, elaborated this in their paper �The Mechanism of Nuclear
Fission� on thebasis of the liquid drop model [10].

In the basic concept of the liquid drop model the total binding energy is derived by a compar-
ison of attractive strong nuclear forces between all nuclei and repulsive electrostatic interaction
of the protons only. For the short range of the strong nuclear forces the in�uence of any other
nucleons but the nearest-neighbours is considered negligible. Moreover, in the theoretical model
these forces can be approximated by considering volume and surface size of the droplet (presum-
ing a known size of its constituents, the nucleons). The volume term hereby refers to interactions
within the droplet and should be proportional to number of nucleons inside it, A; however, some
corrections need to be applied as the particles on the droplet surface have fewer nearest neigh-
bours and therefore, are bound less. The surface particles' net attraction towards the centre
of the droplet results in surface-tension-like e�ects which are also responsible for the spherical
shape in the ground state. The surface term of a sphere proportional to A nucleons therefore
has the dependency on A2/3.
The repulsive forces are given through the interaction amongst protons and as the Coulomb

force has a much wider range, the number of protons Z present has to be included. The energetic
contribution to the binding energy of the Coulomb force EC is given by EC ∝ −Z1Z2/r, where
each proton is repelled by all other protons (but itself) so that Z1Z2 = Z(Z − 1). For large Z
this can be approximated by Z2. The radius r of the droplet is derived from same considerations
as above so that r ∝ A1/3. [11]
The three e�ects named above, the volume, surface and Coulomb terms already reproduce

the general trend of the binding energies. However for heavier nuclides they overestimate the
binding energy. This is improved by the introduction of the so called symmetry term of the form
−(A−2Z)2/A, and can be derived from quantum mechanical considerations in the Thomas-Fermi
model [12]. At last the pairing term δ(A,Z) was introduced by Bethe and Bacher to account for
total energy minimization when the spins of each pair of protons or neutrons can couple. Pairing
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4 2. Theory

therefore gives an explanation why isotopes consisting of even-even nucleon numbers are more
stable then those with odd-odd numbered nucleons [9]. The pairing energy is mass dependent, as
the nucleon wave functions in larger nuclides have a smaller overlap, thus resulting in a decreased
coupling1 [13, p.21].
The Bethe-Weizsäcker formula for the total binding energy EB,tot(Z,A) is �nally given by

the sum of all terms above, each with an empiric coe�cient ki that is determined by a �t to
experimental data:

EB,tot(Z,A) = kvA− ksurA2/3 − kc
Z(Z − 1)

A1/3
− ksym

(A− 2Z)2

A
± δ′

A1/2
; k > 0. (2.1)

kv = 15.5 MeV ksur = 16.8 MeV

kc = 0.715 MeV ksym = 23 MeV

δ′ = 11.3 MeV

Table 2.1.: Constants used in the mass formula (2.1) from [12, p.52]. The
uncertainty was not quoted.

The mass of a nucleus can be calculated if the binding energy is known. If its mass exceeds
the sum of the fragment masses into which it could be divided, the nucleus is unstable against
�ssion. Historically the �rst and most important model for the nuclear �ssion process used the
liquid drop analogy. It was explored by Meitner [14], Bohr and Kalckar [15] and subsequently
given a more detailed theoretical foundation by Bohr and Wheeler [10]. They suggested that
�modes of motion of the nuclear matter similar to the oscillations of a �uid under the in�uence
of surface tension� are to be expected due to the excitation energy of a nucleus. It gives rise to
the possibility of small deformations, which can cause transformation to droplets only connected
by a narrow neck; this is the so called saddle-point con�guration. From the saddle point the
two droplets may form (scission into) two separate fragments � This is the very origin of nuclear
�ssion (see Fig. 2.1). One should note however, that for the short time-scales and lack of pos-
sibilities to directly observe the process, the exact mechanism of the nuclear �ssion is a highly
di�cult and long debated issue2.

Bohr and Wheeler investigated inter alia the in�uence of the nuclear charge Z on the �s-
sion probability for various deformations. From the Bethe-Weizsäcker formula (2.1) it can be
calculated, that any deformation from the spherical ground state will at least initially require
additional energy. However, Bohr et al. concluded that a higher relative nuclear charge (Z2/A)
increases the scission probability as it e�ectively counteracts surface-tension like forces that would
restore the original spherical shape. Upon reaching a critical value, even in�nitesimal deform-
ations will result in an unstable con�guration. For isotopes with smaller charge, the potential
energy associated with the deformation at the saddle point, which can be de�ned as the height

1With di�erent assumptions one calculates a mass dependence proportional to either A−1/2 or A−3/4 [9, p.50].
For Equation (2.1) the �rst dependence was used in accordance with [11].

2One example of an issue where there is still no common interpretation is the explanation of asymmetric �ssion
[16].
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Figure 2.1.: Spontaneous �ssion of a nucleus in the liquid drop model. After
deformation exceeding the saddle point, two separate droplets are formed. In
less than 10−3 sec, the excited �ssion fragments emit prompt neutrons and
in less than 10−14 to 10−7 gammas follow as the fragment de-excites to lower
energy levels [17]. Within a short time, the fragments may further undergo
β−-decay into other isotopes that can subsequently (within about 10−1 to 102

sec)[17] emit delayed gammas or for some fragments also delayed neutrons.
Reproduced from [18, p.338]

of the �ssion barrier3 Ef , will be the decisive factor for the �ssion probability. A sketch of the
�ssion process is shown in Figure 2.2.
In the classical picture �ssion would be impossible, if the total excitation energy E∗ of the

nucleus does not exceed the �ssion barrier Ef . Yet, quantum-mechanical tunnelling enables the
nucleus to scission into fragments though it possesses less energy E∗ than the �ssion barrier Ef .
In fact it might even be in the ground state, which is the case for spontaneous �ssion. The
height of the �ssion barrier was calculated by Frankel and Metropolis [19] with the addition of
the pairing term by Vandenbosch and Seaborg [20]

Ef = 19MeV − 0, 36MeV
Z2

A
+ δfiss, (2.2)

where the pairing term δfiss is zero for even-even, 0.4 MeV for even-odd and 0.7 MeV for other
nuclei.
Bohr and Wheeler [10] calculated an approximate �mean lifetime against �ssion in the ground

state� t1/2,sf for 239Pu of 1022 years, which is much larger than the lifetime against α-decay4.
For elements with a higher nuclear charge Z, like californium, the �ssion probability can be in

3More precisely, one can imagine di�erent shapes of transition sequences that result in the formation of two
separate fragments. The energy of interest is the minimum value of the barrier height at saddle point for all
possible transitions.

4Although current evaluations show that t1/2,sf = (8. ± 2.) × 1015a [21], where as the over all half-life is
t1/2 = (24.11± 0.03)× 103a (and the branching ratio for spontaneous �ssion is much smaller than 1%) [22].
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Figure 2.2.: The �ssion barrier. The Figure shown a continuous lines for
the potential energy of the �ssioning nuclide at di�erent phases and depicts
the corresponding shape in the liquid drop model. The di�erence between
the height of the �ssion barrier Ef and excitation energy E∗ determines the
�ssion probability. The dashed line represents the potential for Z2/A ≥ 48
where the �ssion barrier vanishes. Adapted from [13, edited].

the order of the α-decay rate [18, p.338]. Due to nuclear spin e�ects like δfiss in eq. (2.2)[23],
a large decrease in the �ssion rates is observed for odd-even (about 10−3) and odd-odd isotopes
(10−5) in comparison to the even-even isotopes [18, p.338].

There is a second mechanism leading to �ssion which describes the bombardment of the isotope
(A,Z) with neutrons. Those isotopes with at least one odd nucleon number are readily �ssionable
by the induced �ssion. It can easily be understood as a two fold process, �rst the absorption of
the incident neutron under formation of a compound nucleus C with (A+ 1, Z) and second the
disintegration in one of the competing channels. In general the two possible channels are the
de-excitation by gamma emission (hence this channel does not lead to �ssion) or the scission into
two fragments as described above. For the latter process the energetic di�erence to spontaneous
�ssion rises due to the fact that, in addition to the neutrons kinetic energy, the absorption releases
the neutron binding energy of approximately 6 MeV. For isotopes with odd neutron and/or proton
numbers, there is an additional release of the pairing energy δ(A+ 1, Z) ≈ δ′/

√
240 ≈ 0, 72MeV

that is subsequently available as excitation energy. The compound nucleus therefore has an
excitation energy close to or above the �ssion barrier Ef . As an example this e�ect is observed
for 235U and 239Pu which are readily �ssionable even by neutrons with zero kinetic energy,
whilst having small spontaneous �ssion yields [18, p.338].

Table 2.2 lists the �ssion barrier height Ef and excitation E∗ of several isotopes for slow
neutron bombardment. For E∗ − Ef > 0 induced �ssion with slow neutrons should be allowed,
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for E∗ − Ef < 0 it is only possible by tunnelling. The excitation energy E∗ is calculated using
Equation (2.1) for zero kinetic energy neutrons

E∗ = m(A+ 1, Z)−mn −m(A,Z)

= ((A+ 1)− Z)mn + Zmp −B(A+ 1, Z) − mn − (A− Z)mn + Zmp −B(A,Z)

Taylor
≈ kv −

2

3
ksur

1

A1/3
+

1

3
kc
Z(Z − 1)

A4/3
− ksym

1−

(
2Z

A

)2
± δ′

A1/2
, (2.3)

where the mp is the proton mass and the Taylor expansion was approximated with an in�nite
target mass.

Table 2.2.: Excitation energy E∗ of the compound nucleus formed by slow
incident neutron bombardement compared with the �ssion barrier Ef .

Z A A+ 1 Excitation E∗ Fission Barrier Ef E∗ − Ef
[MeV] [MeV] [MeV]

92 235U 236U 6.77 6.09 0.68
92 238U 239U 5.67 6.65 -0.98
94 239Pu 240Pu 6.94 5.75 1.19
94 240Pu 241Pu 5.36 6.2 -0.115

2.2. Bohr’s Independence Hypotheses

The idea of the compound nucleus formation mentioned above are based on Bohr's independence
hypothesis. In an address delivered before the Copenhagen Academy in 1936 Bohr presented the
core idea as follows:

The phenomena of neutron capture thus force us to assume that a collision between a
high speed neutron and a heavy nucleus will in the �rst place result in the formation
of a compound system of remarkable stability. The possible later breaking up of this
intermediate system by the ejection of a material particle or its passing with emission
of radiation to a stable �nal state must in fact be considered as separate competing
processes which have no immediate connection with the �rst stage of the encounter.
[24, p.344]

We can then depict a nuclear reaction involving the compound nucleus C as

a+X → C (99K Fission : Ci)→ Yi + bi, (2.4)

where a is the incident particle (in our case a neutron) and X is the target (here uranium or
plutonium). The compound nucleus C subsequently emits a particles (neutron or gamma) b and
leaves the residual nucleus Y . If C �ssions, the fragments Ci are created which may de-excite
under the emission of particles bi to leave the residual nuclei5 Yi. The two steps, formation and
disintegration of the compound nucleus C (and Ci) can be regarded �as independent processes,

5Without loss of generality, only the simplest case with two �ssion fragments (i = 1, 2) will be regarded here
and later in the text.
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in the sense that the mode of disintegration of the compound system depends only on its energy,
angular momentum and parity, but not on the speci�c way in which it has been produced.� [25,
p.340]

The hypothesis is based on the e�ect of strong but short-ranged nuclear interactions. From
a comparison of the mean free path Λ of the incident particle with the target radius rX one
concludes that the exchange of the incident particle's energy εn among the whole nucleus X is
much faster than the compound system could disintegrate. Thus, the state of the system at
disintegration does not dependent on the speci�c way of its formation. This argumentation, as
well as the following calculations, are based on Blatt and Weisskopf [25, p.340f].

The mean free path Λ is de�ned as Λ = (σρ)−1, where σ is the cross section for collisions with
other nucleons and ρ is the nucleus density. An empirical value for the neutron-proton scattering
cross section is given by Blatt and Weisskopf in barns as σ ≈ (4MeV/E) for a relative kinetic
energy E > 10 MeV. Now ρ can be expressed with the nuclear radius R and the empirical radius
parameter r0 ≈ 1.5× 10−13cm through

ρ =
A

4/3πR3
= 3

A

4π(r0A1/3)3
=

3

4πr3
0

. (2.5)

The relative kinetic energy E used in the approximation of the cross section σ is E ≈ 1/2(E0 +
εn) with the average kinetic energy per nucleon E0 = h2/(8 × 4 r2

0 mnucleon) ≈ 20MeV.[10]
Combining the above Equations we receive for the mean free path Λ the following relation,
where εn and E0 are expressed in MeV

Λ ≈ 1.8× 10−15(εn + E0) cm. (2.6)

So with an incident neutron energy of εn = 20 MeV we arrive at a mean free path Λ ≈ 7×10−14

that is much smaller than the nuclear radius r0. Thus, once the nucleon is absorbed, it unergoes
many collisions and its energy is quickly shared through its interaction with other nucleons.
The energy is statistically distributed amongst all nuclei, for a large nucleus the energy will be
approximately equal for all constituents. Blatt and Weisskopf conclude that the conditions for
the hypothesis to be valid are that Λ� r0 and εn � (A−1)EB, where EB is the binding energy
of a single nucleon. Both conditions are met for A > 10 and incident neutron energies εn < 50
MeV.6

For higher energies Bohr already correctly assumed that more than one particle could be
emitted and �for still more violent impacts [...] we must even be prepared for the collision to lead
to an explosion of the whole nucleus� [24, p.348].

2.3. Fission Cross Sections

Having explored Bohr's independence hypothesis it is possible to explain the main characteristics
of the neutron-induced �ssion cross section σnf as two independent processes. First the form-
ation of a compound nucleus, which is the capture of a neutron, and second the disintegration
of the compound system into �ssion products. The probability for the whole �ssion process will
be a combination of the individual probabilities. The derivation below mainly follows Glasstone

6For a review of experimental tests of Bohr's hypothesis see [26, p.108f].
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and Edlund [27, p.25f].

In Figure 2.3 one observes a typical energy-dependent induced �ssion cross section spectrum
for a heavy element. It can be divided into three main regions: the �rst before the resonances
start (I), the resonance region from about 0.1 eV to 0.1 MeV (II) and higher energies where there
are no resonances observable (III).

Figure 2.3.: Neutron-induced �ssion σnf (red) and radiative capture σnγ
(green) cross sections for 240Pu; the shaded area represents the uncertainty.
One observes roughly three regions, the �rst before the resonances start (I),
the resonance region from about 0.1 eV to 0.1 MeV (II) and the higher energy
area where there are no resonances observable (III). [28]

The resonance behaviour dominates the cross section below about 0.1 MeV and originates from
a highly increased neutron capture probability (also shown in Figure 2.3 for comparison). The
latter arises as only neutrons with those energies εn can be absorbed, that lead to the formation
of an excited state which matches a quantum level Er of the compound nucleus C. To be more
precise, due to the natural broadening of Er, the level formed with a neutron of energy εn needs
to be only close to Er. This is visualized in Figure 2.4, where the lines to the right represent
the quantum levels in the compound nucleus. In the middle there are hypothetical (target &
neutron) levels, of which the �rst, E0 is for a zero kinetic energy neutron. It exceeds the ground
state of C by the neutron binding energy.
In general E0 does not necessarily fall together with an existing quantum level of C, which

makes E1 the �rst excitable state in this picture. Thus, the �rst resonance occurs at εn = E1−E0.
Subsequent resonances will occur at those neutron energies leading to the formation of a quantum
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Figure 2.4.: Formation of compound nucleus C and energy levels. In the
middle are several hypothetical levels of target & neutron, to the right are
the actual quantum levels of C � only those can be realized. Reproduced from
[27, p.25].

level of C, for instance E2.

Applying the Schrödinger equation the absorption process, Breit and Wigner derived the
following expression for the cross section at (one level) resonance between the levels g and e

σg→e =
λ2

4π

ΓaΓb

(E − Er)2 + 1
4Γ2

, (2.7)

where Γa,b are the levels widths of re-emission of the incident particle a and emission of
outgoing particle b, respectively; Γ is their sum. For a particle, λ is the de Broglie wavelength.
As used above, Er is the energy that corresponds to an exact resonance with the speci�c level.
For simpli�cation only the one level formula is given here, which is valid only for su�ciently wide
broadened levels.
To derive the cross section that only depends on the neutron energy εn, we relate the level

width Γ to the emission probability with the Einstein coe�cient A and the radiative lifetime τ
by Heisenberg's uncertainty relation Γ = ∆E = ~/(2τ) = ~/2 A . Then, the assumption has to
be made that Γb, corresponding to the emission probability of b, is independent of the formation
process (so it is based on Bohr's hypothesis). In fact, this is the case at low energy states, as
the neutron usually de-excites by gamma emission. In �rst approximation, only the gamma
energy, not �the probability� and Γb vary with the incident neutron energy εn. In contrast, the
re-emission of the neutron for which the probability is represented by Γa can be shown to be
proportional to its velocity, so Γa = Γn = const. ×√εn. With a constant α and the de Broglie
wavelength7 λ = h/p that is also proportional to 1/

√
εn Equation 2.7 now yields

σnf =
α
√
εn

Γb

(εn − Er)2 + 1
4Γ2

. (2.8)

The Breit-Wigner distribution is shown in Figure 2.5, where one obtains three regions.
7Actually calculating λ one should use the reduced mass, however for heavy targets (ma � mX) is is approxim-
ately given by the mass of the projectile.
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Figure 2.5.: Breit Wigner resonance peak for neutron capture at the resonance
Er with line width Γ. Reproduced from [27, p.29].

• Before (and after) the resonance, εn � Er (εn � Er), one �nds σnf ∝ 1/
√
εn. Therefore

it is also called the �1/v-region�.

• Exactly at resonance E = Er the cross section has its maximum

σnf,max =
A√
Er

4Γb
Γ2

. (2.9)

when the one level Breit-Wigner formula is applied to each peak individually the expected
behavior can be observed in Figure 2.3. At higher energies the resonance amplitude σnf,max

reduces, but interestingly the resonances also seem to overlap until they can not be resolved any-
more8. This is a result of the increasing level density in the compound nucleus, thus decreased
level spacing, which in a �rst approximation can be derived from a Fermi gas in a sphere (3-dim
box.) where ρ ∝ E∗.

The �ssion cross sections σnf of 240Pu given in Figure 2.3 exhibit the same characteristics as
the capture cross section σnγ in region I and II. However σnf , which is a combination of the
absorption and disintegration probability, is reduced between about 104 for lower and a factor
of 10 for higher energies in comparison with σnγ . One concludes that the probability for the
�ssion of the compound nucleus C must be very small at low neutron energies and increase
for higher energies. This matches the result obtained in the �ssion barrier model, where the
compound nucleus formed, 241Pu, as an even-odd nucleus has a lower excitation energy than the
�ssion barrier; thus, �ssion only occurs by tunnelling though the barrier which in turn has a low
probability.
At higher incident energies, the neutron provides enough energy for the compound nucleus

deformation, and its excitation energy may even exceed the �ssion barrier. This is seen in
region III, where the resonances overlap and vanish. However, when εn gets su�ciently large
to compensate the pairing e�ect, one sees a step-like increase in the �ssion cross section. The
assumptions concerning Γa and Γb made for Equation (2.8) no longer hold true and for neutron
energies above approximately 1 MeV any incident neutron will have enough energy to lead to

8Observe the double logarithmic scale. The resonances betweeby about 0.05 and 0.1 MeV are not explained here
due to the limited scope of the work. Interestingly, they were added only in the �rst (and currently latest)
revision of the ENDF VII database.
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�ssion. Thus the cross section approaches the geometrical value σnf = πR2, where R is the
nuclear radius. With the same parameter as in Equation (2.5), one �nds

σnf = πR2 = π ∗ (r0 ∗A1/3)2 ≈ 2.7b, εn � Ef , (2.10)

where the last approximation is based on a nuclear mass of A = 240. The �ssion cross sections
of �ssile nuclei, like 235U and 239Pu, follow a very similar characteristic which is shown in Figure
2.6. The main di�erence is that due to the di�erent pairing energy (for odd-even nuclei) the
neutron does not needed to provide kinetic energy to overcome the �ssion barrier. In contrary,
according to Equation (2.8) with higher velocity the capture probability decreases. Therefore it
is even more likely for �ssile materials to �ssion at low neutron energies.Incident neutron data / ENDF/B-VII.1 / / MT=18 :

(z,fission) total fission / Cross section + Variance (R)
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Figure 2.7.: Neutron-induced �ssion cross sections of 235U (blue dashed),
239Pu (brown dotted) and 240Pu. The shaded area represents the uncertainty.
[28�30]
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2.4. Evaporation Theory and the Neutron Energy Spectrum

2.4.1. The Weisskopf Spectrum

In order to calculate the energy spectrum of neutrons emitted from �ssion fragments Weisskopf's
statistical theory is followed. As �rst proposed by Frenkel [31], it compares the de-excitation
process with the loss of heat energy by the removal of particles: Thus it is called evaporation
theory. The derivation is based on Bohr's independence hypothesis and if not stated otherwise
taken from Cole [26, p.111�], who explains the physical picture involved in Weisskopf's original
paper [32].

According to Bohr's independence theory it is equivalent to observe the disintegration or
formation of a compound nucleus C. This statement also holds true for the compound C resulting
from scission of C, which may de-excite under the emission of particle b to leave the residual
nucleus Y . The goal will be to �nd the probability per unit time Wn(εn)dεn for emission of the
neutron n (more generally particle b) with kinetic energy in the centre of mass system (CMS)
between εn and εn+dεn, hence transforming C (with the excitation energy E∗C ) into the residual
nucleus Y .
For the derivation following setting will be regarded: Some time ∆t after the emission of the

neutron n ejected from C , n is located within an arbitrary volume V , that is centred around the
residual nucleus Y . In a good approximation for heavy nuclei, Y has zero velocity in the CMS
and without loss of generality the volume V is of spherical shape. To gain statistical information
it is then important that there are many possible reactions which di�er in the energy of the
emitted particle εb and the excitation levels of C and Y respectively. By the excitation energies
one can de�ne the number of microstates of the �decaying compound nucleus� ΩC→nY (∆t) that
will be in direct correspondence to the �decayed states� (n + Y ) produced in V , for which the
shorthand nY is used. Thus ΩC→nY (∆t) also represents the states in which the neutron n and
the residual nucleus Y can be found inside V . In equilibrium, we can express the decay rate
Wn(εn) under emission of a neutron by the ratio of states decaying into (n + Y ) to all possible
states ΩC (E∗C )

∆tWn(εn) =
ΩC→nY (∆t)

ΩC (E∗C )
=
ρC→nY (∆t)

ρC (E∗C )
. (2.11)

In the above equation it was assumed that there are so many energy levels in the excited and
residual nucleus, that the number of microstates Ω can be represented by the continuous level
densities ρ. For the further calculation it is useful to de�ne the combined density of states ρnY
for n and Y in the volume V , which is a convolution of the single particle densities. Next one
multiplies eq. (2.11) by unity (ρnY /ρnY ) and arrives at

Wn(εn) =
1

∆tρC (E∗C )

ρC→nY (∆t)

ρnY
ρnY . (2.12)

One �nds that the ratio ρC→nY (∆t)/ρnY is the probability for states of ρnY to result from
the compound system's decay. However this ratio can equivalently (�reversing the direction of
trajectories�) be identi�ed as all those states in ρnY that will form the compound system C
within the time ∆t.
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Figure 2.8.: Neutron evaporation in the Weisskopf picture. �Only those tra-
jectories contained in the solid angle subtended by the cross-section [σnY ]�
represent states of n and Y that will result in the formation of a compound
nucleus C . The distance between the neutron and the residual nucleus is
given by rnY , vn is the speed of the neutron, and RV represents the radius of
the volume V centred around the residual nucleus. Adapted from [26, p.133].

Next, in this reversed picture, one analyses the particular in�uence on the decay probability
of the fraction of microstates ρnY , for which n has an absolute velocity9 between (vn, vn + dvn)
and that lead to the formation of a compound nucleus C within ∆t. If σnY→C (= σnY ) is the
cross-section for the reaction n+ Y → C , then only those neutrons n that intercept σnY within
∆t contribute to the formation of C . As visualized in Figure 2.8, for a �x distance rnY of n from
Y , this contributing fraction of neutrons is given relative to the total solid angle 4π by

q(rnY ) =
σnY

4πr2
nY

. (2.13)

To �nd all relevant microstates one has to average q(rnY ) over all possible distances. It is �rst
seen that there is no reaction for rnY larger than vn∆t, so q(rnY ) = 0 for rnY > vn∆t. The lower
bound of the integration can be set to rnY = 0, introducing only a very small error for volumes
V (which has the radius RV ) much larger than the nucleus Y , V � σnY . The average

〈
q
〉
then

yields

〈
q
〉

=
1

V

∫
V

q(rnY ) dV =
1

V

∫ RV

rnY =0
q(rnY )4πrnY drnY

=
1

V

∫ vn∆t

0

σnY
4πr2

nY

4πrnY drnY =
σnY vn∆t

V
,

(2.14)

which is subsequently identi�ed with the transition probability during the time ∆t of either
the states (n+ Y ) to form the compound system C , or reversed, the decay of C into (n+ Y )

9The velocity interval is easily connected to the energy interval by vn = (2εn/m)1/2
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ρC→nY (∆t)

ρnY
=
ρnY→C(∆t)

ρnY
=
σnY vn∆t

V
. (2.15)

Combining Equations 2.12 and 2.15, the contribution to the transition rate by particles with
the velocity (vn, vn + dvn) is

dWC→nY
dvn

dvn =
σnY vn
V

1

ρC (E∗C )

dρnY
dvn

dvn

=
dWC→nY

dεn
dεn =

σnY
V

(
2εn
mb

)1/2 1

ρC (E∗C )

dρnY
dεn

dεn.

(2.16)

Next one calculates the energy dependence of ρnY . It is, as mentioned above, a convolution of
the single particle densities for the neutron n and the residual nucleus Y , which has the excitation
energy E∗Y . For a single particle without internal excitation levels the number of states is simply

Ωn(εn) = (2s+ 1)V ∗ Vp = (2s+ 1)V ∗
4
3πp

3

(2π~)3
= (2s+ 1)V ∗

4
3π(2mnεn)3/2

h3
, (2.17)

where the spin-multiplicity 2s + 1, impulse p, the volume in phase space Vp and the relation
Ekin = p2

2m were used. For the neutron which has spin s = 1/2 the single particle density is given
by

ρn(εn) =
dΩn

dεn
= 2V

2π(2mn)3/2ε
1/2
n

h3
=

8πV (2mn)3/2ε
1/2
n

h3
. (2.18)

The convolution integral of the combined micro state density ρnY (EnY ) for the system n+ Y
with the total energy EnY = εn + E∗Y = E∗C − EB therefore yields in the interval (εn, εn + dεn)

ρnY (EnY ) = (ρn ∗ ρY )(EnY ) =

∫ EnY

0
ρn(εn)ρY (EnY − εn) dεn (2.19)

d(ρnY (EnY ))

dεn
dεn = ρn(εn)ρY (EnY − εn) dεn =

8πV (2mn)3/2ε
1/2
n

h3
ρY (EnY − εn) dεn (2.20)

Combining equation (2.16) and (2.20) one �nally obtains Weisskopf's evaporation formula10,
as the transition rate between C and n+ Y for the kinetic energy εn

dWC→nY
dεn

dεn = σnY
16πmnρY (EnY − εn)

h3ρC (E∗C )
εn dεn. (2.21)

Furthermore Weisskopf introduced the microcanonical entropy to the system. Using the gen-
eral de�nition11 S(E) = ln[ρ(E)], Equation (2.21) can be rewritten, expressing the discharge of
a particle with mass m from a system with the energy E∗C and entropy SC (E) and the residual
nucleus' entropy SY (E)

10Weisskopf derived it slightly more general for a particle b with spin s and as stated in [26, p.115] �he denoted
by [Planck's constant] 'h' the symbol which is nowadays referred to as ~ = h/2π.�

11Observe that the Boltzmann constant kb is omitted in this de�nition, so that the nuclear temperature introduced
in Equation (2.24) has the dimensions of an energy.
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dWC→nY
dεn

dεn = σnY
16πmn

h3
eSY (EnY −εn)−SC (E∗C )εn dεn. (2.22)

From this formula with general validity, several simpli�cations can be made. From here on
Weisskopf's original paper [32] is followed, as it contains more details on them.
To simplify the entropy terms, the �rst assumption states that the excitation energy E∗C is

much larger than the neutron binding energy EB and kinetic energy εn (E∗C � EB, E
∗
C � εn).

Moreover the strong approximation is used, that the microstate densities of Y and C are identical
around the energy EnY (SC (E) = SY (E)), therefore the development in �rst order is

SY (EnY − εn) = SY (E∗C − EB − εn) = SC (E∗C )− (EB + εn)
dSC

dE

∣∣∣∣∣
E∗C

. (2.23)

The derivative of the entropy SC can be expressed by the nuclear temperature TC (E), where
E is the most probable energy of the nucleus C in thermodynamical equilibrium.

dSC

dE
=

1

TC (E)
. (2.24)

Equation (2.22) can be rewritten with this de�nition as

dWC→nY
dεn

dεn = σnY
16πmn

h3
e−EB/TA(E∗C )εne

−εn/TA(E∗C ) dεn, (2.25)

which is exactly the formula for the classical thermodynamical evaporation.

The problem for the emission of particles is, that the assumptions established concerning
E∗C and the entropies leading to Equation (2.25) are not ful�lled. For example the binding
energy EB of about 6 MeV is not much smaller than the excitation of the compound system
E∗C ≈ 10MeV = 1/2 ∗ ν̄(EB + εn) (here approximated with the average neutron multiplicity
ν̄ ≈ 2.5 equally shared between two fragments and a neutron energy εn = 1MeV). Nevertheless
Weisskopf �nds a similar approximation as Equation (2.23) where he only assumes that the
neutron kinetic energy, εn is much smaller that the di�erence between the compound state
excitation energy and the binding energy εn � E∗C −EB, which should be ful�lled at least for the
initially evaporated neutrons. The nuclear temperature considered will then be temperature of
the remaining nucleus TY (E). Besides, higher order terms in eq. (2.25) have not been considered,
however Weisskopf shows that this correction they small in comparison with the other terms
appearing in the Equation.
The �nal expression for Weisskopf's emitted neutron spectrum is according to Equation (2.25)

and the corrections in the paragraph above

Wn(εn) dεn =
dWC→nY

dεn
dεn ≈ const.× σnY εne

−εn/TY (E∗C−EB) dεn. (2.26)

This spectrum12 is of the same form as in equation (2.25), however the parameter is the
nuclear temperature TY (E∗C −EB) of the residual nucleus at its most probable energy, not of the
compound system any more. Though not explicitly expressed in the above formulas, (especially
for lower energies) one should bear in mind, that the cross section σnY is also energy-dependent.
12Weiskopf denoted it as a Maxwell distribution, for the proportionality to εn exp[−εn/T (E)] represents the

Maxwell probability density function. In order to avoid confusion with the Maxwell energy spectrum derived
from the ideal gas model, this notation was not adopted. As it will be explained, the Maxwell energy spectrum
is proportional to

√
εn exp[−εn/T (E)].
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2.4.2. Corrections to Weisskopf’s Spectrum and Other Approaches

On the application of Weisskopf's evaporation formula (2.26) to experimental data 1952 Watt
noticed signi�cant deviations [33]. Figure 2.9a shows a comparison of data acquired by Hill [34]
and Watt himself with a modi�ed Weisskopf spectrum; however, especially for energies higher
εn > 7 MeV, no good �t could be achieved. The spectrum was modi�ed based on Feather's
assumption [35] which states that the actual observed spectrum should be a weighted sum over
the evaporation spectra of all �ssion fragment pairs. As such computations were very laborious
at that time, Watt approximated the sum by adding up the spectra of the average energy and
mass of the light and heavy fragment group. The result can be seen in Figure 2.9b.

(a) (b)

Figure 2.9.: Neutron energy spectrum from induced �ssion of U-235 in labor-
atory system. The calculated curve in (a) is a Weisskopf spectrum based
on Feather's assumptions the two �ssion fragments. As can be seen, above
about 7 MeV the calculations deviate signi�cantly from the experiments. In
(b) the Watt spectrum is shown, which obviously is in better agreement with
the experimental data by Watt [33], Hill [34]. Adapted from [33].

Watt achieved a much better agreement by assuming a Maxwellian distribution of the neutron
velocity in the centre of mass system instead of the Weisskopf evaporation formula. In the
laboratory system the Maxwell velocity distribution yields the following formula for the neutron
emission probability N(εn) which has become known as the Watt spectrum13.

N(εn) = const.× e−εn/TW sinh

[
2

√
εn

mn
M EY

TW

]
, (2.27)

13On the origin Watt states that �Several early reports on the �ssion spectrum mention this formula but none
give the originator. It seems likely that it was derived by several investigators and spread by private commu-
nications.� [33, p.1040]
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where the temperature TW is a �t-parameter, EY is the �ssion fragment kinetic energy at the
time of neutron emission and mn andM are the neutron and fragment masses. It is an empirical
formula only and there is no real physical derivation. One could obtain it from the velocity
distribution of an ideal gas in contact with a heat bath, where the momentum distribution is
given by [26]

dΩ(p)

dp
dp =

V

h3
e−p

2/(2mT )4πp2 dp (2.28)

Substituting εn = p2/2m it can be transformed to an energy distribution

ρ(εn) dεn =
2πV

h3
(2m)3/2√εne−εn/T dεn, (2.29)

which leads to Equation (2.27) after transformation into the lab system. However Cole also
shows that if the particles were inside a container and would evaporate though a �small hole�,
the resulting energy spectrum of evaporated neutrons should be identical to Weisskopf's formula
(Equation (2.26)).

Terrell had initiated the idea that was able to resolve the problem of the evaporation theory.
He has shown that �when allowance is made for the expected distribution of nuclear temperatures
of �ssion fragments, [Weisskopf's nuclear evaporation theory] predicts an essentially Maxwellian
[energy] distribution of �ssion neutron energies [εn]� both, in the laboratory system and in the
CMS [36, p.527 & 536]. This is found in good agreement with the available empirical data.
His basic idea was to include not only a single excitation energy, but a distribution of initial
�ssion fragment excitations. From estimations of the fragment kinetic energies or the number
of distributed neutrons, E∗ can be inferred to have an approximately Gaussian shape [37]. The
excitation energies E∗ can then, in a simple way, be related to the nuclear temperatures by
Weisskopf's assumption of a degenerated Fermi gas, so that

E∗ = aT 2 (2.30)

where a is the level spacing constant14.
Terrell further noted that the e�ective residual nucleus energy TY in Equation (2.26) should

take into account the energy loss due to the neutron emission (thus yielding TY (E∗C −EB − εn)
instead of TY (E∗C −EB)). In the derivation of a closed expression Kapoor et al. [38, p.291] stated,
that the additional e�ect rises �due to the various states of excitation in which the fragments are
left after the emission of the �rst, second third, etc. neutrons�. Accordingly, with a distribution
of the nuclear temperatures P (T ) the emission spectrum (initially from Equation (2.26)) can be
written as

N(εn) =

∫ ∞
0

Wn(εn)P (T ) dT∫ ∞
0

P (T ) dT

=
2εn
T 2
m

∫ Tm

0

exp[−εn/T ]

T
dT ≈

2
√
εn exp[−εn/(8

9Tm)]
√
π(8

9Tm)3/2
, (2.31)

where Tm is the temperature corresponding to the maximum excitation of a �ssion fragment.
The �rst equal sign is justi�ed by Terrell's analysis, who �nds a temperature distribution (after
shifting due to neutron emission) similar to P (T ) = 2T/T 2

m [36]. The exponential function does

14In [32] Weisskopf uses the inverse of a, thus the relation E∗ = T 2/a.
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not have a solution in terms of elementary functions, but through an approximation of the mo-
ments of N(εn) one �nally �nds the centre of mass Maxwellian spectrum15. [39�41] Thus, in
fact it is shown that Weisskopf's evaporation theory leads to a spectrum that is (approximately)
equal to a Maxwellian energy spectrum in the CMS and therefore transforms to a Watt spectrum
in the laboratory system.

A �nal remark should be made regarding the energy dependence of the nucleus formation
cross section σnY . In the derivations above the cross section was assumed to be constant, This
seems to be a good approximation for energies in range of several MeV (Weisskopf gives about
εn > 0.8MeV [32, p.302]), but more detailed approaches like the Madland-Nix model [41] give
better results, as they take this dependence into account. Furthermore the conservation of
angular momentum is not considered in either of these theories. Only a full quantum mechanical
treatment like in the Hauser-Feshbach model [42] can account for changes in the density of states
that e�ect the emission probability.

15In fact Equation (2.31) is a further simpli�cation, as their initial �nding of the relation ε
5/11
n exp[...] is approx-

imated by
√
εn exp[...]
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2.5. Multiplicity Distribution

In addition to the energy spectrum, the distribution of �ssion neutron numbers can give in-
formation on the �ssion process and properties of the nuclei involved. In the following, two
approaches will be presented to calculate multiplicity distributions. Though the results are in
good agreement with each other, it is insightful to follow at least the structure of both methods.
Critical points in each approach are the distribution of the fragment's excitation energy E∗ and
the competition between di�erent de-excitation modes.

Possibly the �rst derivations of neutron multiplicities were conducted by Leachman in 1956
[43]. Based on Weisskopf's neutron evaporation theory and using various empirical data the
emission probabilities and respective energies were determined.
The sum of the excitation of both �ssion fragments can be deduced through the energy balance

of the �ssion process (which already appeared in a simpli�ed way in Equation (2.3))16

m(A,Z) + εn + EB = m(AL, ZL) +m(AH , ZH) + EK + E∗, (2.32)

where the subscripts L and H refer to the light and heavy fragment, EK to their total kinetic
and E∗ to the total excitation energy. Leachman deduced the total excitation energy (distri-
bution) by reversing Equation (2.32) with following input: a) Mass tables for the ground state
masses and the binding energy for the �ssioning isotope [44, 45] (and extensions of the mass
surface to the fragment nuclides), and b) ionization chamber measurements for the kinetic en-
ergy distribution of the fragments [46, 47]. The excitation energy distributions of the individual
fragments P (E∗L), P (E∗H) are gained by deconvolution of the total excitation, where the as-
sumption was made that the distributions are identical functions and independent other than
E∗L + E∗H = E∗. Following the evaporation theory with eq. (2.26), the excitations are used to
calculate the neutron emission probability. For simplicity, when emitting several neutrons the
nuclear temperature is considered constant in each step. The intermediate result is the multi-
plicity for a �x pair of �ssion fragments and the �nal multiplicities are obtained by a weighted
average over the distribution of fragment pairs; to simplify the analysis only three pairs were
considered. As can be seen in Figure 2.10 they are, in general, in good agreement with measure-
ments by Diven et al. [48], Hicks et al. [49], Hammel and Kephart [50].

The calculations by Leachman are very complex and involve a large set of experimental para-
meters, so that Terrell tried �nd a simpler means of predicting the neutron multiplicities P (ν).
With only few assumptions regarding the �ssion fragment excitation energy Terrell shows that
the P (ν) is approximately given by a Gaussian distribution. [37]

As in the case of the evaporation theory, in the follwing it will be assumed that neutrons are
emitted whenever energetically possible. Next two assumptions are made that will simplify the
calculations signi�cantly: (i) The emission of a neutron reduces a �ssion fragment's excitation
energy by ∆E, which is close to the average E0 ≡

〈
∆E

〉
and (ii) the �ssion fragment excitations

P (E∗L), P (E∗H) are Gaussian distributed with the standard deviation E0×O from the mean Ē∗.
The latter assumption seems reasonable on the basis of empirical data (as it was already seen
by Leachman) [43, 46, 51]. However, to the best of the author's knowledge, there is no empirical

16In Leachman's paper one will �nd the pair-term δ explicitly carried along as a parameter for all formulas. For
ease of reading it is dropped in the derivations presented here.
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(a) (b)

Figure 2.10.: Neutron multiplicites for induced (a) and spontaneous �ssion
b); calculated results by Leachman are given as bars. Experimental data are
shown as �lled circles (Diven et al. [48]), open circles (Hicks et al. [49]) and
squares (Hammel and Kephart [50]). [43]

evidence or physical reason for ∆E, which is the sum of the binding energy EB and the neutron's
kinetic energy εn, to be approximately constant for all emitted neutrons as stated in (i).17

Terrell shows that with only two assumptions (i) and (ii) the the neutron number distribution
P (ν) can be calculated and that it is relatively insensitive to the distribution of the excitation
energy between the �ssion fragments. In the mathematically simplest case, which is the basis
of the calculations below, one fragment carries the total excitation energy E∗. The cumulative
distribution D(ν) of P (ν) is therefore given by

D(ν) =

ν∑
n=0

P (n) =
1

OE0

√
2π

∫ (ν+1)E0

−∞
exp

[
−(E∗ − Ē∗)2

2(OE0)2

]
dE∗. (2.33)

D(ν) can be expressed only by the average multiplicity ν̄ and the standard deviation O by
two substitutions, the �rst of which is t = (E∗ − Ē∗)/(OE0). Second, with an residual energy
of E0/2 at which no neutron can be emitted anymore, the mean excitation energy is given by
Ē∗ = (ν̄+ 1/2− b)E0, where b is a small parameter for the normalization18. Equation (2.33) can
then be expressed by

D(ν) =

ν∑
n=0

P (n) =
1√
2π

∫ (ν−ν̄+ 1
2
−b)/O

−∞
exp[−t2/2] dt =

1

2
+

1

2
erf[(ν − ν̄ + 1/2− b)/O], (2.34)

17In order to agree with the evaporation spectrum one consequently needs to expect that the �rst neutrons
contribute with higher kinetic energy as they have lower binding energies.

18It is necessary to obey the condition
∑∞

0 νP (ν) = 1, from which the correction parameter b can be determined
to b ≈ 1/2 − 1/2 erf[(ν̄ + 1/2)O]. However, for the data observed by Terrell he gives b < 10−2, thus b it is
almost negligibly small.
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where erf(x) is the error function. Thus the neutron multiplicities P (ν) can be calculated
through

P (ν) = D(ν)−D(ν − 1), with

∞∑
0

νP (ν) = 1. (2.35)

The calculation of P (ν) from the excitation distribution is visualized in Figure 2.11 where the
shaded areas refer to D(ν = 0, 1, 2) and by eq. (2.35) each interval represents the probability to
have an excitation su�cient to emit ν = 0, 1, 2, . . . neutrons. The multiplicities P (ν) are closely
approximated by a Gaussian function which becomes exact in the limit E0/Ē∗ → 0, thus Ter-
rell's illustrative notation will be followed to call it a �Gaussian� distribution; only in this limit
the parameter O is the stochastic standard deviation, thus we will denote it by the �width� of P (ν)

Excitation Energy E*

Ν=2Ν=1Ν=0

E0 2E0 3E0E

PDFHEL

Figure 2.11.: Calculation of the multiplicity distribution P (ν) from the ex-
citation energy distribution P (Ē∗) (eq. (2.33)). The shaded areas refer to
D(ν = 0, 1, 2) and by eq. (2.35) each interval represents the probability to
have an excitation su�cient to emit ν = 0, 1, 2, . . . neutrons. Below E0 no
neutron can be emitted.

The resulting �Gaussian� distribution is very simple description of the multiplicities P (ν), but
it is established on the simpli�cation that the total excitation energy is with one fragment only,
which is very improbable. More reasonable is to assume, just as Leachman does, that the ex-
citation distributions are identical and independent. This will lead to the substitution ν̄ → ν̄/2
and O → O/

√
2 in Equation (2.33) and (2.34). The resulting multiplicity distribution P (ν) is

then a convolution of the individual fragment's distributions PL(ν) and PH(ν)

P (ν) =
v∑

n=0

PL(n)PH(ν − n). (2.36)

In conclusion the neutron emission probability P (ν) is �Gaussian� distributed and given by
Equation (2.35) and (2.36), which involves only two independent parameters ν̄, the average
neutron multiplicity, and O, which is the standard deviation of the excitation energy in unites
of E0. They were determined by Terrell from empirical data of (A) Diven et al. [48], (B) Hicks
et al. [49], (C) Hammel and Kephart [50] and a small amount of unpublished data (D) [52],
where the average multiplicity ν̄ is measured very accurately and O was calculated such that
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the �Gaussian� function best �ts the measured multiplicity distribution. It is interesting to note
that Terrell assumed there to be a nearly constant �width� O for all nuclides; he calculated it
to O ≈ 1.079(07) from a weighted average of twelve measurements with di�erent isotopes. Only
for 252Cf he gives O = 1.207(12). This result is in good agreement with Leachmans calculations,
for which Terrell shows that implicitly O ≈ 1.08 was used and similar results were gained by
Cohen's [53] with O ≈ 1.13. The calculations by Terrell can be seen in Table 2.3 and Figure 2.12.

Terrell's results for a �xed neutron multiplicity �width� O are clearly an approximation only
as they do not take into account variations of O with the incident neutron energy εn. Exper-
imental data compilations by Zucker and Holden [54] however clearly show that O varies with
εn, where usually the multiplicity distribution broadens with the higher energies dO/dεn > 0.
Though smaller in magnitude, additional corrections are expected as Leachman and Terrell only
implement de-excitation by neutrons. Only a model like Haus-Feshbach-Theory including the
competition between neutrons and gammas will be able to account for the resulting deviations.
[55]

Table 2.3.: �Width� of �ssion neutron multiplicity distributions P (ν). For
�ssion induced neutrons the incident energy is given, references to the data
are found in the text. The quantities O and the variance V ar(ν) are measures
for the width19 of P (ν). The last two lines give a weighted average of O. [37]

19According to Terrell O can be uniquely determined by the variance V ar(ν). Terrell's derivation of O is not given
and the authors attempts to reproduce the calculations with the usual formula for a Gaussian distribution
O =

√
V ar(ν) lead to deviations of about 4%. Similar deviations were gained by �tting a �Gaussian� according

to Equation (2.35) or (2.36) to the data. Maybe the data sets had di�erent weighting according to their
measurement uncertainty.
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Figure 2.12.: Neutron multiplicities. The continuous line is for a �Gaussian�
distribution with O ≈ 1.08. Reference to the experimental data is given in
the text; standard deviations are shown. [37]



3 Chapter 3.

Implementation in MCNPX-PoliMi

3.1. Neutron Multiplicities

MCNPX-PoliMi samples the neutron (and also gamma) multiplicities from appropriate distri-
butions for each spontaneous and neutron-induced �ssion event. The following section expresses
the understanding based on the user's manual [56] and the most comprehensive paper published
on this issue [6]. Where information was not available we assume that MCNPX-PoliMi follows
earlier codes like MCNPX and MCNP-DSP.
For the implemented neutron multiplicities, two general groups can be distinguished:

• The spontaneous �ssion neutron multiplicity data is, according to Pozzi et al. [6, p.120],
adopted for evaluations conducted by Santi and Miller [57]. Their method and the data for
238U and 240Pu refer back to an early work of Holden and Zucker [58]. The (re-)evaluation
was necessary to account for improved measurements of the average multiplicity ν̄ since
the initial experiments were conducted. As the average ν̄ can be measured more precisely
independent of the individual probabilities P (v), both are still connected by ν̄ =

∑
νP (ν),

a change on ν̄ requires a subsequent update of P (v). More information on the method and
the resulting distributions for 238U and 240Pu can be found in Appendix A.

• For neutron-induced �ssion, no direct reference on the source data was available. The
manual lists three options for the multiplicity data,

Description in manual [56, p.14] Assumed source

(1) �Terrell; nubar [ν̄] from MCNPX libraries� ⇔ Terrell [37]
(with ν̄ from MCNPX libraries)

(2) �Zucker & Holden for 235U, 238U and 239Pu� ⇔ Zucker and Holden [54]1

(3) �Gwin & al.235U, Zucker & Holden 238U and 239Pu.� ⇔ Gwin et al. [59] and [54].

In (1) the multiplicity distribution P (ν) is calculated by the �Gaussian� with the energy-
independent �width� O as introduced by Terrell. The parameters can be found in Table 2.3.
One �nds that only for 235U + n it is ambiguous which data was taken, as there are three
sets for di�erent neutron incident energies En; for no reference was given we assume that

1Zucker and Holden [54] includes one set of energy dependent data and a second for En ≈ 0. As other information
was not available, we assume the implementation follows Tim Valentine's (ORNL) polynomial �t in MCNP-
DSP [60, p.5] the energy dependent values are taken. - Note Added in Proof: This was con�rmed by Enrico
Padovani (Polytechnic of Milan), pers. comm., 26.08.2013.

25
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MCNPX-PoliMi follows MCNPX, which implements the �width� O = 1.072 corresponding
to 80 keV neutrons [61, p.5-67]. The second parameter, the average neutron multiplicity ν̄,
is gained as a function of En. This function is sampled directly from the Evaluated Nuclear
Data File (ENDF)2 and is shown in Figure 3.1.

Incident neutron data / ENDF/B-VII.1 / / MT=456 : (z,...) nubar p / Neutron production

Incident energy (MeV)
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U235

Figure 3.1.: Average neutron multiplicity ν̄ of 235U (solid line) 238U (dashed)
and 239Pu (dashed and dotted) as a function of the incident neutron energy
En. Retrieved from [29, 30, 62, MT456]

For (2) we assume3 that Zucker and Holden's energy dependent data is implemented. It
should be remarked that their analysis includes the induced �ssion of 235U, 238U and 239Pu
only. Following a suggestion by Frehaut [63] and subsequently its inclusion in MCNP-DSP
[60], it is possible that the �tted values of P (ν) for the three isotopes above are used also
for the other uranium and plutonium isotopes. Otherwise Terrell's data is taken. Is it
not known to the author which method is used in MCNPX-PoliMi. However, for many
application only the �rst three mentioned nuclides are of signi�cance.

Gwin et al. [59] made very precise multiplicities measurements of 233U, 235U, Pu 239U and
241U with thermal neutrons. Consistently with the implementation in MCNP-DSP [60,
p.5] we assume that the measurements for 235U are additionally called up with setting (3);
for the multiplicities of 235U with neutrons of higher energy and the whole set of 238U and
239Pu the data of Zucker and Holden are adopted by MCNPX-PoliMi.

3.2. Energy Dependence of Neutron-Induced Fission Multiplicities
for Fast Neutrons

While there is a fair amount of published literature on spontaneous and induced �ssion multi-
plicities with neutrons between thermal energies and some tens of keV, probably the �rst (and
possibly the only) published data on fast neutrons is based on experiments by Frehaut and his

2Andreas Enqvist (University of Michigan),pers. comm., 13.08.2013.
3Note Added in Proof: This was con�rmed by Enrico Padovani (Polytechnic of Milan), pers. comm., 26.08.2013.
See footnote 1.
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co-workers4. The experiment covers the induced �ssion multiplicities of 235U, 238U and 239Pu
between incident energies in the range of 1-25 MeV, however, due to poor counting statistic they
were only published later by Zucker and Holden [54] who smoothed the data. They found reliable
data for P (ν) between 0-10 MeV with an extrapolation of measurements5 by Frehaut et al. for
238U and an additional data (by [58] and other evaluations, see [54, p.14]) for the thermal energy
ranges of 238U and 239Pu. [54]

Figure 3.2 shows the energy dependent multiplicities P (ν) for 239Pu gained by Zucker and
Holden [54], which are assumed to be implemented in Option (2) of MCNPX-PoliMi's source
speci�cation card and the calculations with the �Gaussian� of �width� O by Terrell [37] and ν̄(E)
from ENDF. For higher incident energies En the average neutron multiplicity ν̄ increases, as
more energy is available for de-excitation of the nucleus by multiple neutron emissions. Moreover,
because Terrell's parameter for the �width� of the distribution O is constant, unlike Zucker and
Holden's distribution which broadens with higher energies, there is a di�erence between the two
sets of P (ν) that increases with the incident energy En. The energy dependent multiplicity
distributions P (ν) 235U and 238U qualitatively show similar characteristics and are given in
Appendix B FigureB.2 and B.3.

(a) (b)

Figure 3.2.: Dependence of the neutron-induced �ssion multiplicities P (ν) on
the incident energy En for 239Pu. The graphs show the absolute (a) and
relative (b) di�erence between the analysis by Zucker and Holden [54] and
calculations for the parameters of Terrell [37]. In this representation the
data points (given only at integer values by [54]) are connected by a smooth
function and the shaded area is the di�erence to zero. Relative deviations of
more than ±20% are reached only at very low values of P (ν) and therefore
not shown here.

A quantitative description of the di�erences between the two sets for the neutron multiplicity
distribution P (ν) can be compared for a model system. We have chosen a con�guration where
we analyse the deviation between [54] and Terrell [37] on a microscopic scale under following
simpli�cations for the calculation: (i) The sample consists of one isotope only, (ii) there are only
spontaneous and induced �ssion reactions, (for instance (α, n)-reactions and scattering are not

4�J. Frehaut and coworkers at the Commissariat a l'Energie Atomique, Dentre d'etudes de Bruyeres le Chatel�
as cited in [54]. See also [64].

5As �ssion cross-section of 238U is very small below the e�ective �ssion threshold of about 1 MeV, there is
comparatively little data available.
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considered), (iii) all neutrons are emitted with an energy given by the �ssion spectrum Wn(En)
(Eq.(2.31)).
Moreover, the de�nition of a meaningful quantity for the comparison is required. Many of

the multiplicity measurement techniques are based on the work of Böhnel [65] to determine the
nuclear material mass in a sample through the �rst three factorial moments [66]; thus, they will
be chosen for the comparison.

The �rst three factorial moments are de�ned by

〈ν〉 =
max∑
ν=0

νP (ν), (3.1)

〈
ν(ν − 1)

〉
=

max∑
ν=0

ν(ν − 1)P (ν), (3.2)

〈
ν(ν − 1)(ν − 2)

〉
=

max∑
ν=0

ν(ν − 1)(ν − 2)P (ν). (3.3)

If one assumes Zucker and Holden's analysis to give the most accurate energy dependence of
P (v), the aim is to calculate the deviation ∆P (v) of the multiplicity distribution by using the
parameters proposed by Terrell. Without loss of generality, the derivations are explicitly applied
to the �rst factorial moment6 〈ν〉. With the simpli�cations (i) to (iii), the deviation ∆〈ν〉 of 〈ν〉 is
given by a weighted average over: �rst, the �ssion spectrum Wn(En) (Eq.(2.31)), corresponding
to the fraction of neutrons in the sample with the energy En and second, probability for these
neutrons to induce �ssion, given by the �ssion cross section σnf (En)

∆〈ν〉 =

max=10MeV∑
En=0

(〈ν〉Zucker&HoldenEn
− 〈ν〉TerrellEn

)Wn(En) wσnf
(En), (3.4)

where 〈ν〉En
is the �rst factorial moment for a �xed energy En and wσnf

(En) is the �ssion cross
section, normalized to unity. As the multiplicities are published in the Zucker and Holden data
[54, Table III-V] for integer energies only, both weighting factors are discretised by integration
over the intervals [En±1/2 MeV] for En ≥ 1 MeV and [0, 0.5]MeV for En = 0 MeV. All additional
input parameters are retrieved for the relevant nuclide from the ENDF/B-VII.1 evaluations
[29, 30, 62]. They are given by the energy spectrum Wn(En), the cross section σnf (En), and
for the calculation of the moments of Terrell's distribution by Eq.(2.35), the conversion tables
from incident energies En to ν̄ = 〈ν〉. The resonance region of the �ssion cross section, which is
visible below 30keV for the data sets used, is approximated by an 1/

√
En dependency. Finally,

the weighted relative deviation ∆〈ν〉,rel is calculated by

∆〈ν〉,rel =
∆〈ν〉

max∑
En=0

〈ν〉Zucker&HoldenEn
Wn(En) wσnf

(En)

. (3.5)

Table 3.1 lists the weighted relative deviations ∆〈ν〉,rel on the factorial moments for neutron-
induced �ssion multiplicities of 235U, 238U and 239Pu between (1) Terrell and (2) Zucker and
6For higher moments simply replace 〈ν〉 with the desired quantity. Besides, it should be noted that the factorial
moments de�ned in Equation (3.1-3.3) are taken for a �xed energy
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Holden. For 235U the deviations of the two additional parameters O given by Terrell [37] are
calculated, however we assume MCNPX-PoliMi follows MCNPX to implement O=1.072. The
high variability of the deviations, about ±10% on the third moment for calculations with the dif-
ferent values of O further illustrate the error that may be introduced with an energy independent
multiplicity �width�.

Table 3.1.: Weighted relative deviations ∆〈ν〉,rel between Terrell [37] and
Zucker and Holden [54] for the �rst three moments of the multiplicity dis-
tribution P (ν) implemented in MCNPX-PoliMi. For 235U the deviations of
the two additional data sets given by Terrell are calculated, however we as-
sume MCNPX-Polimi follows MCNPX to implement O=1.072

∆〈ν〉,rel [%]
235U 238U 239Pu

O=1.04 1.072 1.20

〈ν〉 0.11 0.08 -0.12 0.10 0.03〈
ν(ν − 1)

〉
2.90 1.73 -3.29 -1.86 0.49〈

ν(ν − 1)(ν − 2)
〉

10.96 7.58 -7.04 -2.42 3.04

The third option implemented in MCNPX-PoliMi, which adds the precise measurements by
Gwin et al. [59] to the 235U multiplicities for thermal neutrons to the data by Zucker and Holden
[54], may give an additional improvement. The deviations are calculated as before, only that
Gwin is the reference value in Eq. 3.5. It can be seen from the comparison in Table 3.2 that
Zucker and Holden underestimate the �rst moments of the thermal neutron multiplicity by about
1%.

Table 3.2.: Weighted relative deviations ∆〈ν〉,rel between Zucker and Holden
[54] and Gwin [59] for the �rst three moments of the multiplicity distribution
P (ν) of 235U implemented in MCNPX-PoliMi.

∆〈ν〉,rel [%]
235U

〈ν〉 -0.96〈
ν(ν − 1)

〉
-1.44〈

ν(ν − 1)(ν − 2)
〉

-1.07

The energy dependence of the �width� O found by Zucker and Holden is plotted in Figure 3.3,
where O was calculated as the root of the variances of P (ν) listed in [54, Table III-V]. Although
desirable, due to the lack of a pattern between shapes for the di�erent nuclides it seems di�cult
generalise the energy dependence of O; Appendix B includes the values for this plot in Table
B.1. This is also re�ected in a remark by Zucker and Holden on the analysis of the experimental
variation of the multiplicities P (ν) [54, p.12]

The more we have delved into the details of P (ν) the more it seems to be so that
such systematics as are noticed (e.g. Terrell [37], et al.) are true only in a fairly
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approximate sense and are not necessarily accurate enough relations to be useful in
many technical applications, such as neutron correlation counting.
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Figure 3.3.: Experimental energy dependence of the multiplicity distribution
�width� O for 235U (stars), 238U (triangles) and 239U (diamonds) calculated
from the variances quoted in the analysis of Zucker and Holden [54, Table
III-V]. The calculated values of Terrell [37] are given as a comparison to the
right of the y-axes.

Discussion

The analysis up to this point suggests that if the multiplicity distribution P (ν) is described by
a �Gaussian�, the corresponding �width�O should depend on the incident neutron energy En. At
�rst this seems to be in apparent con�ict with the work by Lestone [67], who �nds, for almost
identical source data, that below approximately 10 MeV the �width� O can be assumed to be
independent of En. The author became aware of the analysis by Lestone [67] only just before
the submission of this study, however a preliminary comparison of both approaches can be drawn.

In his study Lestone [67] compares calculations based on a �Gaussian� function to experimental
data by Soleilhac et al. [64]. This data is also the source of the analysis by Zucker and Holden [54];
we are, just as Lestone [67, p.1], not aware of any other measurements for the multiplicities 235U,
238U and 239Pu for fast neutrons. Lestone takes a di�erent approach to �t O to empirical data
by which it is attempted to minimize χ2 directly of the factorial moments instead of minimizing
it for the measured distribution of P (ν); Figure 3.4 represents such a �t for 239U.
The calculations of Lestone [67] are seemingly in good agreement with the experimental data

[64], but contrary to Lestone who concludes that the �width� O is independent of En, we calculate
a deviation for the third moment of about 3% (see Table 3.1). To explain the inconsistency, in
Table 3.3 we calculate the di�erence between the �Gaussians� used. This yields typically to less
than 1%. However, a �rst estimate by manually reading the data of Figure 3.4 indicates7, that
the deviation between Lestone's �t and the experimental data is also in the order of 3% to 5%.
Consequently, this preliminairy result indicates that the sparse empirical evidence is, at least,
inconclusive concerning the energy dependence of the �width� O.

7The estimate is based on the the two data points circled in Figure 3.4 that show a deviation of about 0.7/15 ≈ 4.7
for the �rst and 1/30 ≈ 1.3 for the second point, respectively.
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Figure 3.4.: The second and third factorial moments as a function of the
�rst factorial moment for 239Pu. The solid line shows the calculations by
Lestone [67] for �x �width� O = 1.140, independent of the incident energy.
The experimental data taken from [64], where we have selected two points
(circled) to roughly estimate the uncertainty. Adapted from [67, Fig.3].

Table 3.3.: Relative di�erence between the �rst three factorial moments of
P (ν) as calculated by this study from parameters given in [37], and the ana-
lysis of [67, Table IV]. For 238U the data is not listed in [67].

235U 239Pu

Terrell Lestone Rel. Di�. [%] Terrell Lestone Rel. Di�. [%]
O 1.072 1.088 1.140 1.140

〈ν〉 2.42738 2.413 0.5923 2.87739 2.875 0.0830〈
ν(ν − 1)

〉
4.6776 4.635 0.9107 6.77401 6.6738 1.47933〈

ν(ν − 1)(ν − 2)
〉

6.75058 6.778 -0.4062 12.5169 12.528 -0.0886
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3.3. Neutron Energy Distribution

After the multiplicity distribution is sampled over one of the above mentioned data sets, MCNPX-
PoliMi determines the �ssion neutron energy distribution P (εn) [6]. For induced �ssion both
distributions are implemented independently of each other [6]; following the implementation in
MCNPX [61, H-1�], we assume that the neutron energy is sampled from a Watt spectrum. In
case of spontaneous �ssion data from a model developed by Lemaire et al. [68] is used [6], which
is presented in this section. If not noted otherwise the derivations will follow Lemaire et al. [68].

The approach taken by [68] relies on Weisskopf's evaporation theory and is in principle similar
to Leachman's calculations [43], which were introduced in section 2.5. However, their Monte
Carlo simulation is able to give much more details on the �ssion process, for example one can
extract the neutron energy for a speci�c multiplicity εn(ν). Though the model can in general
be applied to all isotopes, provided the necessary input parameters are su�ciently well known,
the paper reported results only on neutron-induced �ssion of 235U (at En = 0.53MeV) and the
spontaneous �ssion of 252Cf. Accordingly references to the data in the following section refer to
these isotopes only.

The total excitation energy of both �ssion fragments E∗tot is obtained from the energy balance,
Equation (2.32), where the fragment masses8 for the light and heavy pair AL, AH are gained from
an atomic mass evaluation [69]. More then 70 di�erent pairs of AL and AH were sampled from an
experimental pre-neutron emission �ssion fragment mass distribution [70, 71]; the corresponding
charge and kinetic energy distributions were assumed to be Gaussians with parameters from [72]
and [70, 71] respectively.
A crucial point that accounts for di�erent results in several calculations is again the total

excitation energy partition between the light and heavy fragments. In the model of [68], two
hypotheses are considered:

(H1) Light and heavy fragment share the same nuclear temperature at scission. It follows from
the Fermi gas model Eq. (2.30) for a level density parameter9 a proportional to the mass
number A (for a derivation see e.g. [73, p.59]), that the initial excitation energy of a given
�ssion fragment is

E∗ = aT 2, a ∝ A→ E∗tot = E∗L + E∗H = aLT
2 + aHT

2 = aLE
∗
L +

aH
aL
E∗L

E∗L,H = E∗tot

1

1 +
aH,L

aL,H

(3.6)

(H2) Experimental data of the de-excitation is used to infer the initial excitation of each frag-
ment, namely, the average neutron multiplicities ν̄exp(A), neutron and gamma energies
〈εn〉exp (A) and Ēexp,γ(A)

EL,H = E∗tot

ν̄exp(AL,H)
〈
η
〉
L,H

+ Ēexp,γ(AL,H)∑
i=L,H

[ν̄exp(Ai)
〈
η
〉
i
+ Ēexp,γ(Ai)]

, (3.7)

8Though not explicitly mentioned, it will be assumed that Lemaire et al. [68] also gained the neutron binding
energy from [69].

9For an explicit de�nition of a, see Lemaire et al. [68, p.5].
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where
〈
η
〉
L,H

is the average energy removed from the fragment per emitted neutron. It is
the sum of neutron CMS-energy 〈εn〉exp (A) and the binding energy, which was averaged
over the pairing e�ect for the removal of two neutrons, so that

〈
η
〉
L,H

= 〈εn〉exp (AL,H) +
1

2
EB2n(AL,H , ZL,H). (3.8)

Additionally Lemaire et al. [68] assumed that the ratio of energies removed by neutrons
and gammas for both fragments is equal, which is, at least, not unreasonable regarding the
de-excitation models. The input parameters are taken from [74�76].

Given the nuclear temperature TH,L by the Fermi model E∗ = aT 2 and the excitation energy
by (H1) or (H2), the emission probability for a neutron with a given kinetic energy is obtained
by sampling over the Weisskopf spectrum, Eq. (2.26). Neutrons are emitted until the the
excitation energy of the residual nucleus is less then neutron separation and pairing energy.
Here also Terrell's correction explained in section 2.4.2 is implemented, which states that the
residual nucleus excitation should take into account the emitted neutron energy thus yielding
E∗(A−1, Z) = E∗(A,Z)−EB−εn; this is important for the simulation between the competition
between neutron and γ emission at lower energies.
Besides, it should be mentioned that Lemaire et al. [68] assume a constant inverse cross sec-

tion σnY (εn). The spectrum is transformed into the laboratory system is by sampling for each
nucleus over all emission angles under the usual assumption of isotropic emission in CMS. An
advantage over previously discussed models however is, that not only an average, but the exact
recoil energy of the residual nucleus can be taken into account.

Figure 3.5 gives the neutron energy spectrum calculated with each hypothesis for 252Cf (a)
in the CMS and (b) laboratory system respectively. As a comparison also the Madland-Nix
(=Los Alamos) model [41] calculations are shown. There is a close correspondence between
the spectrum gained with equal temperatures at scission (H1) and the CMS calculations of the
Madland-Nix model. The same degree of agreement is reached in the laboratory system with
the experimental data by [77] for both hypothesis. As Lemaire et al. [68] noted, the second
hypothesis (H2), which produces a too hard spectrum, could be improved for the high energy
tail if an energy dependent cross section as in the Madland-Nix model was taken into account.
The neutron-induced energy spectrum of n(0, 53 MeV) + 235U is not represented very well by

the approach of Lemaire et al. [68]. This can be seen in Figure 3.6, that shows the neutron en-
ergy spectrum with both hypotheses in (a) the CMS and (b) the laboratory system respectively.
Whilst in the CMS (H1) is still in reasonable agreement with the Madland-Nix model [, Mad-
land1982] in the laboratory system none of the assumptions can reproduce the experimental data
by [78] (though the Madland-Nix Model does). We have to conjecture that a lack of su�ciently
precise input data is the reason for the derivations for energies of neutron-induced �ssion, thus
leading to an independent sampling of the multiplicities in MCNPX-PoliMi. As Pozzi et al. [6]
state, �the available data were not deemed su�cient to develop a generalized model (including
[...] neutron-induced �ssion) of the dependence of the energy spectrum on the number of neutron
emitted in the �ssion event.�

The �nal neutron energy spectra implemented in MCNPX-PoliMi for two spontaneous �ssion-
ing nuclides, 252Cf and 240Pu, are presented in Figure 3.7, where the spectra are shown for each
of the possible multiplicities of a �ssion. To generate them, 108 spontaneous-�ssion events were
sampled according to the method described above (and additional input parameters for 240Pu).
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(a) (b)

Figure 3.5.: Neutron energy spectrum for the spontaneous �ssion of 252Cf in
(a) the �ssion fragment CMS and (b) the laboratory system. The thin line
are results of Lemaire et al. obtained when assuming equal temperature at
scission (H1) and the thick line when partitioning of the excitation energy
is based on experimental data for the de-excitation (H2). For a comparison
to the two hypothesis, the results of the Madland-Nix model (=Los Alamos
model) are shown as a dashed line. Both hypothesis are in good agreement
with the experimental data by [77] in the laboratory system. Reproduced
from [68, p.5].

(a) (b)

Figure 3.6.: Neutron energy spectrum for the neutron-induced �ssion
n(0, 53 MeV) + 235U in (a) the �ssion fragment CMS and (b) the labor-
atory system. Experimental data for the laboratory system are from [78].
Reproduced from [68, p.4].
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(a) (b)

Figure 3.7.: Neutron energy spectrum as a function of various multiplicities
for the spontaneous �ssion implemented in MCNPX-PoliMi for (a) 252Cf and
(b) 240Pu; the distributions were generated by simulating 108 �ssion events
for each isotope. Reproduced from [6, p.121].
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Conclusions

Given the isotopic composition from gamma measurements, the detection of neutron multipli-
cities can be used to determine the mass of nuclear material. It requires accurate knowledge of
the neutron multiplicity distribution of a �ssion process. This study has summarized the under-
standing of the physical background of neutron multiplicities, determined in�uence factors like
the incident particle energy and reviewed the implementation in MCNPX-PoliMi.

The �ssion neutrons spectra resulting from Weisskopf's evaporation theory [32] was shown to
follow a Maxwellian energy distribution in the centre of mass system, if allowance is made for
the expected distribution of �ssion fragment excitations. The Maxwellian transform into a Watt
spectrum in the laboratory framework [33]. A further re�nement of this theory is given by the
Madland-Nix model [41], which lifts the previously used simpli�cation of a constant �inverse�
cross section.

The work of Terrell [37] was revisited, which approximates the multiplicity distribution by a
�Gaussian� function (see Section 2.5 for the de�nition). There are two parameters, the average
neutron multiplicity ν̄ and the �width� O of the multiplicity distribution. For induced �ssion
Terrell predicts that only ν̄ depends on the incident neutron energy.

MCNPX-PoliMi samples the neutron multiplicities from appropriate distributions for each
spontaneous and neutron-induced �ssion event. Where information on the implementation was
not available it was assumed that MCNPX-PoliMi follows earlier codes like MCNPX and MCNP-
DSP. The spontaneous �ssion neutron multiplicity data is adopted for evaluations conducted by
Santi and Miller [57]. For the distribution of induced �ssions either the calculations by Terrell
[37] can be used, or empirical data of Soleilhac et al. [64] which was analysed by Zucker and
Holden [54]. To the best of the author's knowledge the latter is the only published set of multi-
plicity measurements for fast neutrons.

For spontaneously �ssioning nuclides and thermal to low energy neutrons the calculations of
the multiplicity distribution are in good agreement with empirical data. However, a comparison
with the data analysed by Zucker and Holden [54] for incident energies between 0 and 10 MeV
yields signi�cant di�erences.
A quantitative description of the deviations between the multiplicity distributions predicted

by Terrell, and by Zucker and Holden has been developed in a model system. For simplicity, the
sample consists of a single isotope, and only spontaneous and neutron induced �ssion reactions

37
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are considered. The resulting deviations are below ±0.2% for the �rst moment, below ±1.9% for
the second moment, but for the third moment yield up to approximately 7.6% for 235U, −2.4%
for 238U and 3% for 239Pu.

Consequently, this study indicates that if the multiplicity distribution P (ν) is described by a
�Gaussian�, the corresponding �width� O of P (ν) should depend on the incident neutron energy
En. This might be in con�ict with the work by Lestone [67], who �nds that below approximately
10 MeV the �width� O can be assumed to be independent of En. However, a preliminary calcula-
tion of this study shows that the deviations between Lestone's calculations and the experimental
data are also in the order of 3% to 5% for the third moments.

Considering the sparse empirical evidence, it is thus inconclusive whether the �width� O de-
pends on the incident neutron energy. In the absence of further measurements of the multiplicity
distribution P (ν) of fast neutrons, a comparison of actual simulations conducted with the di�er-
ent distributions implemented in MCNPX-PoliMi may give further insight on this issue. Finally,
the reliability of the results could be checked against multiplicity counting measurements of
nuclear material samples.
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A Appendix A.

Re-Evaluation of Spontaneous Neutron
Multiplicities

The neutron multiplicities P (v) for spontaneous �ssion in MCNPX-PoliMi are taken from Santi
and Miller [57], who re-evaluated the distributions to account for improved measurements of the
average multiplicity ν̄ since the initial experiments were conducted. As the average ν̄ can be
measured more precisely independent of the individual probabilities P (v), both are still connec-
ted by ν̄ =

∑
νP (ν), a change on ν̄ requires a subsequent update of P (v). The method for the

re-evaluation was derived in an earlier compilation by Holden and Zucker [58] and is explained
in the following. [58]

In order to determine the neutron multiplicities P (v) from experiments, knowledge of the
detector e�ciency ε is essential. The later can in turn be determined from the average neutron
multiplicity ν̄ of well known calibration samples1 by

g = ε ν̄ q, (A.1)

where q is the known �ssion rate and g the gross count rate for the calibration sample. By
equation (A.1) ε is inversely related to ν̄ and if the value initially used to calibrate the detector
changes, so should the detector e�ciency ε (and therefore the detected neutron number probab-
ilities). To correct the emission probability P (ν) of ν neutron for this fact, �rst the probability
Qn of actually observing n neutrons in a measurement is reconstructed with the old values ε′ for
the detector e�ciency

Qn =
∑
ν

P (v)

[
ν!

n!(ν − n)!

]
ε′n(1− ε′)ν−n. (A.2)

Then a set of P (ν) can be calculated that is both consistent with the updated value of ν̄ (and
ε) and the initially distribution of observed neutrons Qn. Therefore equation (A.2) is inverted
and used with the updated values, thus yielding

P (ν) =
∑
n

Qn

[
n!

ν!(n− ν)!

]
ε−n(ε− 1)n−ν . (A.3)

1�The most careful experiments on [ν̄] have been those which compare the thermal neutron �ssion value for the
�ssile nuclide with the [ν̄] value for the spontaneous �ssion of 252Cf� [58, p.248].
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50 A. Re-Evaluation of Spontaneous Neutron Multiplicities

After the neutron multiplicities P (ν) from various experiments (if available) have been trans-
formed in this way, any remaining di�erence is attributed to measurement uncertainties. The
average values and corresponding standard deviations for 238U and 240Pu are derived (if within
one sigma from the mean) from two [79, 80] and seven [48�50, 81�84] di�erent measurement
respectively; Table A.1 lists the results. Except for [79], who applied 3He proportional counters,
all experiments used liquid scintillator detectors.

Table A.1.: Neutron multiplicities for spontaneous �ssion from 238U and
240Pu. The prime is used to denote that the mean values are derived after
the data sets were adjusted to the updated value of 〈ν〉. Reference to original
experiments is given in the table. Reproduced from [58].

238U [79, 80] 240Pu [48�50, 81�84]

Mean Std.Dev Mean Std.Dev
abs. [%] abs. [%]

P0 .0481677 .0054 11.21 .0631852 .0033 5.223
P1 .2485215 .0403 16.22 .2319644 .0019 0.8191
P2 .4253044 .0839 19.73 .3333230 .0061 1.830
P3 .2284094 .0263 11.51 .2528207 .0060 2.373
P4 .0423438 .0108 25.51 .0986461 .0031 3.143
P5 .0072533 .0011 15.17 .0180199 .0017 9.434
P6 .0020406 .0018 88.21
〈ν〉* 1.9900000* .03 1.5 2.1540000* .005 0.232〈
ν(ν − 1)

〉
2.8743 .1411 4.909 3.7889 .0290 0.7654〈

ν(ν − 1)(ν − 2)
〉

2.8219 .4810 17.05 5.2105 .1492 2.863



B Appendix B.

Supplementary Data on the Energy
Dependence of P (ν)
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Figure B.1.: Empirical dependence of the neutron-induced �ssion multipli-
cities P (ν) on the incident energy En for 239Pu. In this representation the
data points (given only at integer values by [54]) are connected by a smooth
function.

O
En n=0 1 2 3 4 5 6 7 8 9 10
235U 1.107 1.121 1.143 1.166 1.201 1.196 1.198 1.190 1.179 1.170 1.165
238U 1.199 1.191 1.189 1.192 1.197 1.203 1.210 1.218 1.228 1.242 1.261
239Pu 1.167 1.169 1.183 1.200 1.216 1.229 1.238 1.242 1.244 1.245 1.248

Table B.1.: Empirical energy dependence of the multiplicity distribution
�width� O for 235U, 238U and 239U calculated from the variances quoted in
the analysis of Zucker and Holden [54, Table III-V].
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(a) (b)

Figure B.2.: Dependence of the neutron-induced �ssion multiplicities P (ν)
on the incident energy En for 235U. The graphs show the absolute (a) and
relative (b) di�erence between the analysis by Zucker and Holden [54] and
calculations for the parameters of Terrell [37]. In this representation the
data points (given only at integer values by [54]) are connected by a smooth
function and the shaded area is the di�erence to zero. Relative deviations of
more than ±40% are reached only at very low values of P (ν) and therefore
not shown here.

Figure B.3.: Same as Figure B.2 but for 238U; Relative deviations of more
than ±20% are reached only at very low values of P (ν) and therefore not
shown here.
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