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Abstract

Confidence in future nuclear arms control agreements could be enhanced by direct
verification of warheads. It would include warhead authentication. This is the
assessment based on measurements whether a declaration that a specific item is a
nuclear warhead is true. An information barrier can be used to protect sensitive
information during measurements. It could for example show whether attributes
such as a fissile mass exceeding a threshold are met without indicating detailed
measurement results. Neutron multiplicity measurements would be able to assess a
plutonium fissile mass attribute if it were possible to show that their bias is low.

Plutonium measurements have been conducted with the He-3 based Passive Scrap
Multiplicity Counter. The measurement data has been used as a reference to test the
capacity of the Monte Carlo code MCNPX-PoliMi to simulate neutron multiplicity
measurements. The simulation results with their uncertainties are in agreement with
the experimental results. It is essential to use cross-sections which include neutron
scattering with the detector’s polyethylene molecular structure. Further MCNPX-
PoliMi simulations have been conducted in order to study bias that occurs when
measuring samples with large plutonium masses such as warheads.

Simulation results of solid and hollow metal spheres up to 6000 g show that the
masses are underpredicted by as much as 20%. The main source of this bias has been
identified in the false assumption that the neutron multiplication does not depend on
the position where a spontaneous fission event occurred. The multiplication refers
to the total number of neutrons leaking a sample after a primary spontaneous fission
event, taking induced fission into consideration. The correction of the analysis has
been derived and implemented in a MATLAB code. It depends on four geometry-
dependent correction coefficients. When the sample configuration is fully known,
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these can be exactly determined and remove this type of bias.

As the exact configuration of warheads includes sensitive information which must
be protected, it will not be fully declared and the coefficients must be estimated.
Assuming that the plutonium component of warheads can be approximated by hol-
low spheres, it is shown that the coefficients could be approximated if the thickness
of the hollow sphere were known. Other parameters such as the radius have a very
small influence: Only knowing the thickness introduces a negligible bias of 1% for
the fissile mass. If the thickness remained unknown, a less accurate estimate of the
correction coefficients could also be estimated from the multiplication which is di-
rectly measured by neutron multiplicity counting. Bias from this approach is smaller
than using the analysis based on the false assumption. In order to study the influ-
ence of further materials in the warhead and the container the warhead would be
placed in, correction coefficients were also studied for plutonium spheres surrounded
by polyethylene. The result of the polyethylene is that the correction coefficients
are somewhat smaller. Applying the correction coefficients that do not take fur-
ther materials into account to these cases, the fissile masses are overestimated by
around 7% in exemplary simulations. Bias would be further reduced if information
on further materials could be included in the correction coefficients’ assessment.

By having developed a method to reduce bias, the reliability of neutron multiplicity
counting measurements has been increased. The obtained level of reliability may
suffice in the context of additional verification measures as these also add to the
overall confidence.
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Zusammenfassung

Vertrauen in zukünftige nukleare Rüstungskontrollvereinbarungen könnte durch di-
rekte Verifikation von Sprengköpfen erhöht werden. Dies würde die Authentifizierung
von Sprengköpfen beinhalten. Das ist die Überprüfung anhand von Messungen, ob
eine Deklaration, dass es sich bei einem spezifischen Objekt um einen Sprengkopf
handelt, wahr ist. Eine Informationsbarriere könnte eingesetzt werden um sensitive
Informationen bei den Messungen zu schützen. So könnte zum Beispiel angezeigt
werden, ob Attribute wie das Überschreiten eines Grenzwertes einer spaltbaren
Masse erfüllt sind, ohne dabei genaue Messergebnisse preiszugeben. Neutronenmul-
tiplizitätsmessungen wären geeignet ein solches Plutoniummasseattribut zu evaluieren
falls gezeigt werden könnte, dass systematische Unsicherheiten gering sind.

Plutoniummessungen wurden mit dem He-3 basierten Passive Scrap Multiplicity
Counter durchgeführt. Die Messdaten wurden als Referenz verwendet, um die
Fähigkeit des Monte Carlo Codes MCNPX-PoliMi zu testen, Multiplizitätsmessun-
gen zu simulieren. Die Simulationsergebnisse stimmen innerhalb ihrer Unsicher-
heiten mit den experimentellen Resultaten überein. Dafür ist es notwendig Wirkungs-
querschnitte zu verwenden, die die Neutronenstreuung an der Molekülstruktur von
Polyethylen im Detektor beinhalten. Weitere MCNPX-PoliMi Simulationen wurden
durchgeführt, um systematische Unsicherheiten zu untersuchen, die bei Messungen
großer Plutoniummassen, wie bei Sprengköpfen, vorhanden sind.

Simulationsergebnisse von Voll- und Hohlkugeln aus Metall bis 6000 g zeigen, dass
die Massen um bis zu 20% unterschätzt werden. Die relevanteste Ursache der sys-
tematischen Unsicherheit wurde in der falschen Annahme identifiziert, dass die Neu-
tronenmultiplikation nicht von dem Ort der Spontanspaltung abhängt. Die Multi-
plikation ist die gesamte Anzahl an Neutronen nach einer primären Spontanspal-
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tung, die unter Berücksichtigung induzierter Spaltung einer Probe entkommt. Die
korrigierte Analyse wurde hergeleitet und in einem MATLAB Skript implementiert.
Sie hängt von vier Korrekturkoeffizienten ab. Falls die Konfiguration einer Probe
vollständig bekannt ist, können diese exakt bestimmt werden und beseitigen diese
systematische Unsicherheit.

Da die genaue Konfiguration der Sprengköpfe sensitive Informationen beinhaltet, die
geschützt werden müssen, wird sie nicht vollständig deklariert werden, sodass die Ko-
effizienten abgeschätzt werden müssen. In der Annahme, dass die Plutoniumkompo-
nente der Sprengköpfe durch Hohlkugeln angenährt werden kann wird gezeigt, dass
die Koeffizienten genähert werden können, wenn die Dicke der Hohlkugel bekannt
ist. Andere Parameter wie der Radius haben einen geringen Einfluss: Wenn aus-
schließlich die Dicke bekannt ist, führt dies zu einer vernachlässigbaren Unsicherheit
von 1% für die spaltbare Masse. Falls die Dicke unbekannt bleibt, können die Kor-
rekturkoeffizienten mithilfe der Multiplikation, einem direkten Ergebnis der Mul-
tiplizitätsmessungen, mit geringerer Genauigkeit geschätzt werden. Die systema-
tische Unsicherheit ist geringer als bei der Analyse mit der falschen Annahme. Um
den Einfluss weiterer Materialien im Sprengkopf bzw. im Container, in dem der
Sprengkopf gelagert wäre, zu untersuchen, wurden die Korrekturkoeffizienten für
Plutoniumkugeln bestimmt, die von Polyethylen umgeben sind. Das Ergebnis des
Polyethylens sind etwas geringere Korrekturkoeffizienten. Werden auf diese Fälle die
Korrekturkoeffizienten, die keine weiteren Materialien berücksichtigen, angewandt,
werden die spaltbaren Massen in beispielhaften Simulationen um 7% überschätzt.
Die systematische Unsicherheit würde weiter reduziert werden, falls Informationen
zu weiteren Materialien für die Bestimmung der Koerrekturkoeffizienten verwendet
werden könnten.

Durch die entwickelte Methode, die systematische Unsicherheit zu reduzieren, konn-
te die Zuverlässigkeit von Neutronenmultiplizitätsmessungen erhöht werden. Die
erreichte Zuverlässigkeit könnte im Kontext zusätzlicher Verifikationsmaßnahmen
ausreichen, da diese ebenfalls zum Gesamtvertrauen beitragen.
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Preface

The Non-Proliferation Treaty has been agreed upon because it not only includes the
nonproliferation obligations, but also calls for nuclear disarmament. Arsenals have
been significantly reduced, but still it seems that not all states take disarmament
obligations very seriously. I dream of a world free of nuclear weapons - in my
lifetime!

I believe that nuclear disarmament can only be sustainable when the international
community has confidence in it. This is not only a challenge for nuclear weapon
states, but for non-nuclear weapon states alike. I see it as a requirement that both
must work jointly on effective verification measures. While there is a lot of technical
work in some nuclear weapon states, capacities and capabilities must be developed
particularly in non-nuclear weapon states. The goal of my work in the past few years
was to make a modest contribution towards the development of according concepts
and techniques.

My research has been part of a project at the Carl Friedrich von Weizsäcker-Centre
for Science and Peace Research in cooperation with the Institute for Peace Research
and Security Policy, entitled “Nuclear Weapons Authentication with an Attribute
Information Barrier: A Feasibility Study.” Without providing the details yet, war-
head authentication is considered a central component of an overall disarmament
verification regime. In its core, it is a technical challenge as appropriate measurement
techniques must be developed. However, it also concerns national and international
security issues and thereby it must include policy deliberations as well. This has
been reflected in the project’s aim: to demonstrate the technical feasibility taking
political boundary conditions into consideration. The project was funded by the
German Foundation for Peace Research.
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This dissertation focuses on the physical and technical challenges and results. Re-
garding political boundary conditions, it was a pleasure to be able to contribute my
non-nuclear weapon state perspective to the international Verification Pilot Project
of the Nuclear Threat Initiative. I am co-author of its report

Nuclear Threat Initiative, Innovating Verification: New Tools & New
Actors to Reduce Nuclear Risks, Verifying Baseline Declarations of Nu-
clear Warheads and Materials (2014).

Some further contents of this dissertation have also been published:

M. Göttsche and G. Kirchner, “Measurement techniques for warhead
authentication with attributes: Advantages and limitations,” Science &
Global Security 22, 83-110 (2014).

M. Göttsche and G. Kirchner, “MCNPX-PoliMi simulation capacity us-
ing thermal neutron cross-sections to assess the reliability of the neutron
multiplicity mass analysis where shielding is unknown,” in 55th INMM
Annual Meeting (Atlanta, 2014).

M. Göttsche and G. Kirchner, “Neutron multiplicity counting for future
verification missions: Bias when the sample configuration remains un-
known,” in 2014 IAEA Symposium on International Safeguards (Vienna,
2014).

As part of the research project, I have also guided the students MatthewMcArthur (3
month internship June to August 2013) and Fabio Zeiser (Bachelor thesis delivered
in August 2013) at the Centre for Science and Peace Research. Wherever this
dissertation covers joint research results, it is indicated per footnote.
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Chapter 1

Introduction

Nowadays, verification of nuclear arms control refers to the verification of delivery
vehicles. This is the case for instance in the New START Treaty between Russia and
the United States [1]. Warheads are counted indirectly via the delivery vehicles they
are associated with. Once a warhead leaves the delivery vehicle, it is not considered
any further in the verification regime. It could, however, be deployed again at any
time.

Going beyond deployed warheads that are verified nowadays between the US and
Russia, the total inventory also includes undeployed warheads and warhead com-
ponents1 at various locations as well as those in transport or under maintenance
[2, p. 21]. Individual warheads rotate between all these statuses. To prevent
re-deployment, irreversible nuclear disarmament requires the dismantlement of war-
heads. In this case, they are transported to the dismantlement facility, where they
are physically taken apart. This results in non-nuclear components and the fissile
material in form of the warhead components. To ensure the irreversibility of disar-
mament, the fissile material from the warhead components must be retrieved and
then disposed or converted to exclusively civil purposes. Otherwise, components
could be used to build new warheads.

Regarding the longer-term future of nuclear arms control and disarmament, there
seems to be fairly broad agreement that verification must become more intrusive and

1For the purpose of this dissertation, the term “warhead component” refers to that part of a
nuclear warhead that contains the fissile material.
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that the above-mentioned inventories and processes must be directly verified. This
would allow states to know the number of existing warheads and to understand the
complete nuclear armament potential. After having made declarations at the entry
into force of an agreement and having established a baseline inventory of their nuclear
warheads and warhead components, states would allow others to verify that the
declarations are accurate. After the baseline has been established, inventory changes
must be declared and verified. This includes in particular the verified dismantlement
of nuclear warheads. In addition, verification of fissile material production and stocks
is required to have confidence that new warheads are not produced and that the fissile
material obtained from the dismantlement process is not re-used in warheads. Such
verification provisions are relevant for a Fissile Material (Cutoff) Treaty. Fissile
material verification is, however, out of the scope of this dissertation which focuses
on the verification of warheads and warhead components.2

In order to truly understand the importance of warhead verification, it must be
further elaborated: The confidence provided from declaring and verifying nuclear
warhead and warhead component inventories as well as dismantlement of warheads
could play a key role in maintaining security and stability. This is likely required
for potential parties to engage in a process of deep reductions: It is unlikely that
deep cuts in U.S. and Russian nuclear arsenals, as well as those of all other states
possessing nuclear weapons, will become possible until all have high confidence that
agreed-to drawdowns are occurring on a mutual and reciprocal basis. Currently,
minor levels of uncertainties may be permissible: Reductions have left arsenals large
enough that cheating on a minor scale will not have dramatic effects on stability due
to the sufficient size of the remaining arsenal. Furthermore, nuclear weapon states
may believe that their current nuclear doctrines deter from complete circumvention
of agreements. In the future, if all states come to embrace the policy of a world free
of nuclear weapons and take further steps toward that goal, numbers of warheads
will eventually be reduced to levels where the remaining arsenals are small, accord-
ingly minor cheating may effect the perceived stability. Due to reduced capabilities,
current deterrence doctrines need to be changed to forms that may be perceived
to be less effective. This will probably only be possible if the parties are confident
that their counterparts have also reduced their capabilities accordingly. Cheating
would be a much larger concern making it likely that no further reductions would
be undertaken without a path to highly effective verification.

2Further information on a Fissile Material (Cutoff) Treaty and its verification can be found in
[3].
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Article VI of the Non-Proliferation Treaty inter alia calls for pursuing negotiations
in good faith “on a treaty on general and complete disarmament under strict and
effective international control.” Some non-nuclear weapon states have been quite vo-
cal in their expectation of greater progress. In the very extreme, they might decide
not to comply with the Non-Proliferation Treaty as the result of perceived noncom-
pliance of Article VI by nuclear weapon states. As disarmament can only be verified
comprehensively by including warheads and their dismantlement in the regime, this
appears to be a requirement in order to enable “strict and effective international
control” as demanded by Article VI. The language also strongly suggests that non-
nuclear weapon states should be involved in a verification regime. By appropriate
verification measures, nuclear weapon states could demonstrate compliance with
disarmament commitments to the international community. Furthermore, if states
possessing nuclear weapons outside the Non-Proliferation Treaty decided to reduce
their arsenals, according verification could significantly increase the confidence of
the international community, including other states in the region.

From a global perspective, it is the responsibility of the US and Russia to commence
with the process of serious reductions due to their vast nuclear arsenals. In view
of a world without nuclear weapons, all other states possessing nuclear weapons
must reduce as well at some point. While bilateral US-Russian agreements may
continue to be a basis for disarmament, future agreements will eventually need to
include the five nuclear weapon states recognized by the Non-Proliferation Treaty
and also the states outside the Treaty. Then, it seems clear that all these states
must be included in the corresponding verification activities. Besides the Treaty’s
Article VI requirement, directly including non-nuclear weapon states in verification
activities is the most efficient and possibly the only feasible way for non-nuclear
weapon states to obtain confidence in reductions. Due to its expertise from verifica-
tion of nonproliferation obligations, the International Atomic Energy Agency may
be a possible actor in this regard. In this case, special challenges must be taken
into account: The Non-Proliferation Treaty prohibits nuclear weapon states from
“in any way” assisting, encouraging or inducing “any non-nuclear-weapon state to
manufacture or otherwise acquire nuclear weapons” while non-nuclear weapon states
promise not to manufacture nuclear weapons. In effect, the Treaty might therefore
place some fairly strict constraints on verification activities involving direct inspec-
tions of nuclear warheads as inspectors might obtain information on how to build
them. To enable multilateral verification including non-nuclear weapon states, the
specific challenges must be understood and resolved.
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Whatever parties will be involved in verification, there are three overarching tech-
nical requirements for the task of verifying inventory declarations and warhead dis-
mantlement:

• Each warhead and warhead component needs to be uniquely identified so that
it is never counted twice, substituted with a fake, and can be tracked within a
high security environment. Two different ways to securily identify a warhead
or warhead component are to record an intrinsic signature of the item similar
to a fingerprint or to attach a tamper-resistent tag to it.

• A Continuity of Knowledge of the inventoried warheads and warhead compo-
nents must be maintained at all times, including during their eventual disman-
tlement. This means keeping continuous track of the warheads and warhead
components in the form of an uninterrupted thread of evidence over time. Ap-
plicable techniques are containment and surveillance measures such as cameras
or seals.

• An item declared to be a warhead or warhead component must be authen-
ticated which means that verification measures must confirm its identity as
warhead or warhead component. This dissertation focuses on this require-
ment.

1.1 Information Barriers

States declaring their nuclear arsenals will very likely not allow inspections that
reveal information of their warheads or warhead components which they consider
sensitive. The Non-Proliferation Treaty sets boundaries when verification involves
non-nuclear weapon state participants. However, due to reasons of national security,
nuclear weapon state participants may not have access to significantly more infor-
mation [2, p. 38]. Assuming a case where verification measures are decided upon
in a cooperative manner, mutual agreement on warhead authentication activities
can only be reached in the case where nuclear-armed states are confident that their
sensitive information is not at stake. The inspecting party – whose interest is to
gain maximum confidence on the true nature of a declared warhead – would likely
prefer rather intrusive and comprehensive authentication measures. The goal is to
create a warhead authentication system which builds confidence while preventing
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unacceptable levels of intrusion that could leak information the inspected state is
unwilling or legally not allowed to share. This intuitively appears to be somewhat
contradictory.

A solution would be to take potentially intrusive measurements containing sensitive
information, but to automatically process the measurement information via an al-
gorithm so that the only output visible to the inspector would be of non-sensitive
nature (e.g. a green, yellow or red light indicating “specified warhead”, “inconclu-
sive measurement” or “not specified warhead”). Preventing the leakage of sensitive
information would be the task of a so-called information barrier.

Two types of authentication systems are frequently discussed. The template type
uses the unique radiation spectrum or other measurable signatures of a previously
authenticated item to compare it to the signature of the item under consideration.
When the signatures match, the item is successfully authenticated as long as there
is sufficient confidence that the reference signature comes from a correctly authen-
ticated item. This dissertation focuses on the other type, the attribute approach:
The inspected party would declare attributes that characterize the warhead or war-
head component to be authenticated. It is essential that attributes do not deliver
sensitive information. For obtaining maximum confidence, the attributes should be
chosen in a way to minimize the possibility of cheating, so that other items will not
fulfill all attributes, but that the authenticated items will. This idealistic concept
might not hold in reality: There might be false positives and false negatives. The
challenge will then be to define attributes and analysis algorithms in such a way
that the analysis results in reasonable confidence, i.e. to minimize the probabilities
of false results. The definition of the level of confidence deemed necessary is a po-
litical task. An attribute information barrier only analyzes whether the item under
investigation meets the defined attributes; the value of an information barrier then
depends on the attribute definitions and algorithms as well as on the quality of the
measurement techniques.

Attributes might be of qualitative or quantitative nature. Attributes based on quan-
titative thresholds provide the benefit that it is not necessary to declare the actual
values which might be sensitive. If these thresholds deviate too much from the
actual values, however, other items might also satisfy them. This would reduce
the confidence that could be gained from such attributes. The following list con-
tains examples of published attributes for plutonium-based warheads and warhead
components [4]:
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• Presence of plutonium

• Plutonium ratio Pu-240/Pu-239

• Plutonium mass threshold

1.2 Measurement Issues

A high reliability of attribute measurement techniques is required as inspectors
cannot review and analyze detailed measurement results, if they are in doubt for
whatever reasons. In contrast to other situations where radioactive samples are
characterized, the knowledge that exists prior to the measurements, for example
the sample’s geometry, may be inadequate. Many measurement techniques require
certain information on a sample to function accurately. For example, the detector
calibration may need to be performed using calibration sources that are similar to
the samples measured afterwards. Due to the lack of knowledge, the measurement
system should be chosen which requires a minimum amount of assumptions regarding
the nature of the item for delivering accurate results. Reducing the dependency of
measurements on geometry could allow more meaningful attribute thresholds as
close as possible to the real values to increase the confidence gained from such a
system.

The potential undeclared presence of materials between warhead component and
detector is part of this issue. In the case of fully assembled warheads, materials
such as a conventional explosive surround the fissile component. Furthermore, most
nuclear warheads are stored in containers for safety reasons [2, p. 33]. Warhead
components may also be stored in containers [2, p. 33]. Such issues could have an
impact on the measurement and therefore on the output of the attribute analysis.

Inspectors must understand how large deviations between real and measured values
(bias) become as the properties of the item and intervening materials vary in plausi-
ble manners. Then they can assess the reliability of specific measurement methods
and attribute analyses when it is impossible to obtain further information on the
item.
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1.3 Research Task and Methodology

A promising attribute measurement system is a combination of gamma spectroscopy
and neutron multiplicity counting. Gamma spectroscopy could determine the iso-
topic composition of a sample, specifically the plutonium isotope ratio. Once the
isotopic composition is known, neutron multiplicity counting could potentially de-
duce the fissile mass from measuring the rate of neutrons from spontaneous fission.
Both measurement techniques are frequently used in the context of Safeguards and
nuclear security. In most cases, sufficient knowledge exists regarding the config-
uration of the samples to be measured and bias is usually small. Furthermore,
neutron multiplicity counting has been used for research for verifying warhead dis-
mantlement. The major projects in this regards are the Trilateral Initiative, the
Fissile Material Transparency Technology Demonstration and the Attribute Veri-
fication with Neutrons and Gamma Rays project, which were all engagements of
nuclear weapon states.3 All three initiatives concluded that their neutron multiplic-
ity counting systems functioned successfully [5, 6, 7].

While all three research projects significantly advanced the technical discussion of
verified warhead dismantlement, their publications do not detail potential issues
and limitations of neutron multiplicity counting. The technical research to date
has focused on preventing measurement systems to release sensitive information.
In general, there is very little research investigating proposed systems in regard to
reducing false assessments, which is the main requirement of the inspecting party.
The lack and need of such research is expressed in [2, pp. 32]. As it is essential for
an inspecting party to trust the functionality of a system, this dissertation presents
research on sources of bias in neutron multiplicity counting. As warheads and war-
head components have much larger masses and volumes compared to those samples
which are frequently assayed nowadays, it is specifically examined whether there is
a bias when measuring samples with large masses. Furthermore, it is investigated
how bias depends on the sample configuration in order to assess the reliability of
neutron multiplicity counting when the configuration remains unknown. The aim
of this dissertation is to reduce bias and thereby increase the reliability of neutron
multiplicity counting measurements.

The methodology of the research is a combination of neutron multiplicity measure-
ments of plutonium samples and Monte-Carlo simulations. Measurements can be

3In the Trilateral Initiative, the International Atomic Energy Agency was involved as well.
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used to test whether the simulation code is capable of accurately performing neu-
tron multiplicity counting analyses by comparing its results to the measurement
data. The simulations are required as a much larger variety of plutonium samples
not available for measurements needs to be examined.

Chapter 2 begins with the description of relevant neutron sources and interactions
to allow an understanding of the subsequent description of how the neutron multi-
plicity counting technique works. The purpose of the overall chapter is to lay the
physical foundation of the dissertation. Chapter 3 describes neutron multiplicity
measurements of plutonium samples. Chapter 4 introduces the simulation code and
compares simulation results to the measurement results. It is explained which data
must be implemented for the code to reproduce the measurement results with rea-
sonable accuracy. By discussing the simulation capacity, this chapter serves as the
legitimization to base further results on simulations. Chapter 5 contains the analysis
of potential bias: First, it discusses bias for such plutonium configurations which
are suited to study effects in warhead components without any further materials be-
tween plutonium and detector. The aim is to reduce bias for such samples. Then, it
discusses plutonium configurations surrounded by further materials where physical
effects are expected that would similarly occur in warheads and warhead components
placed in containers. Chapter 6 summarizes the main research results and discusses
their implications for verified warhead inventories and warhead dismantlement.
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Chapter 2

Neutron Multiplicity Counting

2.1 Neutron Sources and Interactions

Fissile materials emit neutrons that can be detected. Those neutron sources and in-
teractions with relevance for this dissertation are introduced in this section. Besides
spontaneous fission, induced fission is a primary source of neutrons. Furthermore,
(α, n) and (n, γ) reactions and elastic scattering of neutrons are discussed.

2.1.1 Spontaneous and induced fission

The basics of spontaneous fission can be understood from the Bethe-Weizsäcker mass
formula [8, 9]. It includes the pairing term which explains the large difference of
spontaneous fission yields of plutonium isotopes: Pu-239 has a spontaneous fission
rate of 0.007 ± 0.001 fissions/s·g, whereas Pu-240 has 479.1 ± 5.3 fissions/s·g [10, 11]1.
As there is a difference of 5 orders of magnitude, spontaneous fission by Pu-239
can be neglected for the purpose of this dissertation. Cf-252 is another isotope
that decays by spontaneous fission at a rate of 6.136 · 1011 ± 2 · 109 fissions/s·g [10].
While isotopes with odd neutron and even proton numbers have low spontaneous
fission yields, they can be fissioned by inducing thermal neutrons which have energies

1For Pu-240, the uncertainty corresponds to the standard deviation of different measurements
summarized in [11], which seems more appropriate than listing the much smaller statistical
uncertainties.
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around 0.025 eV : By capturing a thermal neutron, a compound nucleus with an even
number of neutrons is formed which is in an excited state due to the release of the
neutron’s binding energy. Due to the pairing term, this energy is larger compared
to a compound nucleus with an uneven number of neutrons and an even number of
protons. For Pu-239 induced fission, the excitation energy is larger than the fission
threshold. Even-even isotopes, however, require fast neutrons as additional kinetic
energy is required to sufficiently excite the compound nucleus to overcome the fission
threshold. Fig. 2.1 and 2.2 show the induced fission cross-sections of Pu-239 and
Pu-240. While the Pu-239 induced fission cross-section for 0.025 eV neutrons is
748 b, for Pu-240 it is 0.06 b. At 2 MeV , the cross-sections are similar (2.0 b for
Pu-239 and 1.7 b for Pu-240) [10].2

The fission neutron energy spectra can be derived from evaporation theory (which
expresses the de-excitation process of the fission fragments as the loss of heat energy
by the removal of particles), see [13]. It can be expressed by the Watt spectrum3

[14]

Wfission(E) =
exp (−E/a) sinh

�√
bE
�

´∞
0 exp (−E/a) sinh

�√
bE
�
dE

(2.1)

where E is the energy of the emitted neutron, a and b are parameters specific to
the nuclide and the nature of the reaction, for example given in [15, page H-1]. The
spectra displayed in Fig. 2.3 show that the energy distribution of neutrons emitted
from spontaneous fission of Pu-240 and induced fission of Pu-239 are very similar.

A fission process usually releases more than one neutron. The number of neutrons
emitted in spontaneous or induced fission is called neutron multiplicity.4 It can be
shown that this distribution can be approximated by a Gaussian function [16]. The
multiplicity distributions of spontaneous fission of Pu-240 and Cf-252 are published
in [17]. Distributions for Pu-239 induced fission are published in [18], examples

2A more detailed explanation of the spectra and the fission process in general is omitted in
this dissertation in order to keep the focus on neutron multiplicity counting. For a precise
understanding of spontaneous and induced fission, including the physics of the different energy
regions of the spectra, Fabio Zeiser covers this issue in his Bachelor thesis [12].

3A more detailed explanation of the evaporation theory and applied corrections including the
Watt spectrum is omitted in this dissertation, but is covered in Fabio Zeiser’s Bachelor thesis
[12].

4The physics behind the neutron multiplicity distributions are presented in a concise manner
here. Fabio Zeiser covers them in more detail in his Bachelor thesis [12].
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Figure 2.1: Pu-239 cross-sections of induced fission (red), (n, γ) (black) and (n, n�)
reactions (blue) [10]

Figure 2.2: Pu-240 cross-sections of induced fission (red), (n, γ) (black) and (n, n�)
reactions (blue) [10]
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Figure 2.3: Energy spectrum of neutrons emitted from spontaneous fission of Pu-240
(blue) and induced fission of Pu-239 (red)

are shown in Fig. 2.4, all data are based on measurements. One can see that
the induced fission multiplicity distributions depend on the energy of the absorbed
neutrons. With increasing energy of the absorbed neutron, the mean number of
emitted neutrons increase as the kinetic energy of the absorbed neutron must be
transferred, see Fig. 2.5. Also the standard deviation of the Gaussian probability
density function grows with increasing neutron energy [18].

2.1.2 Further interactions

Besides induced fission, there are further neutron absorption reactions. Examples
are the (n, γ) reaction, neutral reactions such as (n, 2n) or charged reactions such
as (n, p) or (n, α). Of these absorption reactions, (n, γ) is the dominant process for
plutonium. The cross-sections are shown in Fig. 2.1 and 2.2. The (n, γ) reaction is
relevant at thermal energies compared to induced fission. Averaged over the fission
neutron energy spectrum for Pu-239, however, its cross-section is two orders of
magnitude lower than that of induced fission. For Pu-240, the difference is smaller.

In an inelastic neutron scattering process, denoted by (n, n�), the neutron transfers
energy to the nucleus which reaches an excited state which eventually decays by
the emission of γ radiation [19, p. 360]. Thereby, the neutron is slowed down and
changes its direction. Fig. 2.1 and 2.2 show the cross-sections of inelastic scattering.
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Figure 2.4: Neutron multiplicity distributions for spontaneous fission of Pu-240
(blue), induced fission of Pu-239 by thermal neutrons (green) and by
2 MeV neutrons (brown)

Figure 2.5: Mean number of neutron emitted by induced fission of Pu-239 as a func-
tion of the energy of the absorbed neutron [10]
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Below a certain neutron energy threshold, inelastic scattering is impossible as neu-
trons must at least carry enough energy to excite the nucleus to its first excited state.
For neutrons having higher energies, the nucleus can be excited to further states.
The cross-sections are comparable to induced fission cross-sections for Pu-239 and
Pu-240 for neutron energies above 100 keV .

In addition to the inelastic reactions, elastic scattering of neutrons takes place.
Elastic scattering also slows neutrons down and changes their direction. The average
energy loss of the neutrons is given as ΔE = 2E ·A/

�
(A+ 1)2

�
where A is the mass

number of the nucleus [19, p. 360]. Therefore, elastic scattering is much less relevant
for elements with a large than for elements with a low mass number (for Pu-239 the
average neutron energy loss is 0.8%, for C-12 it is 14.2%, for H-1 it is 50%). In
appropriate media, fast neutrons can be moderated to lower (e.g. thermal) energies
by multiple elastic scattering.

As the last important aspect, plutonium mainly decays by the emission of α particles.
The energies of the α particles from Pu-239 and Pu-240 are in the range of 4 −
5.2 MeV [10]. For such energies, (α, n) reactions can take place in certain light
isotopes, among them O-17 and O-18 [19, p. 347]. The (α, n) neutron yields are
39.7 ± 1.1 n/s·g for 239PuO2 and 146 ± 4 n/s·g for 240PuO2 with natural oxygen
isotope abundances [20].5 These reactions may occur to a much lesser extent also
in plutonium metals with oxide impurities.

2.2 Detection

In the context of nonproliferation, arms control and nuclear security, neutron de-
tectors are mainly used to count neutrons as opposed to spectroscopy. In contrast
to total neutron counting, however, more information can be obtained by perform-
ing coincidence measurements. In particular, the spontaneous fission rate can be
obtained from which the Pu-240 mass can be determined. When the isotopic com-
position of a sample is known, e.g. through gamma spectroscopy, the total plutonium
mass can be calculated. This section introduces how neutron detection and coinci-
dence measurements work in general. The subsequent section then introduces the
mathematics required to deduce the plutonium mass.

5The uncertainties are the standard deviations of different measurements summarized in [11],
which seems more appropriate than listing the much smaller statistical uncertainties.
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No detector registers all neutrons emitted by a sample. Throughout the disserta-
tion, the detection efficiency � is defined as the ratio of detected neutrons to neutrons
leaving the fissile material. Depending on the geometry of the detector and the loca-
tion of the neutron source, not all emitted neutrons necessarily reach it. � is further
reduced as not all neutrons that reach the detector are necessarily detected. Accord-
ingly, � also depends on the specific detection mechanism. An example is neutron
detection by neutron capture in the detector. In this case, � depends specifically on
the capture cross-section of the detector material.

Neutron detectors can be operated to perform coincidence measurements with gates.
A method to deduce the Pu-240 mass requires two types of gates: A neutron detec-
tion event triggers the Reals+Accidentals (R+A) gate which is opened after a short
predelay PD and remain open during the gate length G.6 All detected neutrons
open a R+A gate, whether another gate is already open or not. The other type of
gate, the Accidentals (A) gate, is randomly triggered. For a purely random neutron
pulse stream, the two gates would deliver the same results within the statistical
uncertainty. If, however, correlated neutrons from fission are present, the number
of neutrons measured in the R+A gate would be higher than in the A gate. Fig.
2.6 shows the result of a plutonium metal neutron multiplicity measurement (12.5
g, 95.4% Pu-239, 4.5% Pu-240) performed at the Joint Research Centre in Ispra,
Italy.7 The abscissa shows the number of neutrons falling into a gate; the ordi-
nate shows the rate of these gates. For the R+A gate, multiplicity 0 means that a
neutron triggered a gate. The appropriate gate length can be determined based on
the estimated neutron travel time between its emission and the detection [21, pp.
69]. The probability distribution of the travel time f(t) can be approximated by an
exponential function with the die-away time τ [22]

f(t) ≈ 1
τ
e

−t/τ (2.2)

2.3 Basis of Neutron Multiplicity Counting

In this section, it is shown how information can be retrieved from the R+A and
A gates. The neutron flux emitted by a fissile sample is affected by a number of
unknown properties:

6The predelay is required due to electronic effects in the detector, as explained in [21, page 33]
7The He-3 based Passive Scrap Multiplicity Counter has been used to perform the measurement,
see section 3.1.
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Figure 2.6: Plutonium metal neutron multiplicity measurement with the R+A gate
(blue) and A gate (red) distributions (12.5 g, 95.4% Pu-239, 4.5% Pu-
240)

• Total spontaneous fission rate

• Neutron multiplication, in particular by induced fission of Pu-239

• (α, n) reaction rate if oxides or certain other light isotopes are present

This multiplicity distribution of detected neutrons can be expressed in terms of its
moments. They can be related to the moments of the multiplicity distribution of
neutrons emitted by the plutonium sample, i.e. by spontaneous and induced fission
as well as the (α, n) reactions. The legitimization to describe the neutrons from
all the emission processes in a single multiplicity distribution is the “superfission
model”. It defines spontaneous fission and (α, n) as a primary neutron source. Then,
it assumes that all induced fission neutrons are emitted simultaneously with the
primary spontaneous fission or (α, n) reaction. With this model, the moments of this
distribution can be analytically described as functions of the unknown properties.
Accordingly, with neutron multiplicity counting the three unknown properties can
be assessed. The mathematical formalism is described in the following.8

8The most widely cited derivation by Ensslin et al. [21] contains minor ambiguities, as was
pointed out by Pàzsit et al. in [23]. While Pàzsit et al. rightly point out parts of the issue,
they did not clarify all ambiguities, which is done here. Publications by Hage, Cifarelli and
Dierckx [24, 25, 26] each describe parts of the derivation, but do so in a very complex manner.
The derivation in [21] is simpler, therefore it is generally followed here.
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2.3.1 Description of neutron source

Let Psf (ν) be the probability distribution of the number of neutrons ν emitted
during a spontaneous fission process. The first moment of this distribution is νsf1

which is equal to the average number of neutrons emitted per fission.9 Let F be
the spontaneous fission reaction rate and Nsf the spontaneous fission neutron rate.
If the total neutron emission rate due to (α, n) reactions is Nα, the ratio of (α, n)
reaction neutrons to spontaneous fission neutrons is

α = Nα

Nsf

= Nα

F · νsf1
(2.3)

Thus, the total reaction rate of the primary source can be expressed as

Rs = F +Nα = F (1 + α · νsf1) (2.4)

where the subscript s refers to “source”. The multiplicity distribution of the neutrons
emitted by spontaneous fission and (α, n) reactions is [27]

Ps(ν) =
F

Rs

Psf (ν) +
Nα

Rs

δ1ν (2.5)

where δij is the Kronecker symbol . Neutrons that are emitted from spontaneous
fission or (α, n) reactions may leak the sample, be absorbed or induce fission. These
processes can be described as multiplying the number of primary neutrons from
spontaneous fission and (α, n) reactions. In reactor physics, this is described by the
multiplication factor keff , which is the ratio of the number of neutrons produced
in one generation to the number either absorbed or leaked in the preceding genera-
tion. If absorption and leakage outweigh the number of newly produced neutrons,
keff < 1. In this case, the primary neutrons produce additional neutrons, but the
neutron population declines with each neutron generation. Instead of keff , the leak-
age multiplication M (for brevity this dissertation refers to it as “multiplication”)
is used in neutron multiplicity counting. It includes the sum of the neutrons from
all generations divided by the number of primary neutrons. The total number of
neutrons that eventually leak the sample is smaller than the sum of the generations:

9For visual clarity, all moments are written in bold font throughout the dissertation.
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As this sum includes neutrons from one generation which were captured or induced
fission in a later generation and therefore never leak the sample, these neutrons are
subtracted to obtain M . Overall, M is the total number of neutrons that leak a
sample as a result of primary neutrons divided by the number of primary neutrons.
M is derived in [19, pp. 422]:

M = 1 − p
1 − pνi1

(2.6)

where p is the probability that a neutron induces fission. Neutron leakage is in-
cluded in this description; p is accordingly smaller than it would be without neutron
leakage. νi1 is the first moment of the multiplicity distribution for induced fission
(denoted by subscript i), i.e. the average number of neutrons released per induced
fission. Taking the primary neutron source (spontaneous fission and (α, n) reac-
tions) and the neutron multiplication together, one can speak of fission bursts, or
“superfission” [27] where the neutrons emitted altogether can be described by a nor-
malized multiplicity distribution P (ν). A probability distribution such as P (ν) can
be equivalently described by their factorial moments (see proof in [27]) which are
defined by

∞�

ν=0
νP (ν) = ν1

∞�

ν=0
ν(ν − 1)P (ν) = ν2

∞�

ν=0
ν(ν − 1)...(ν − n+ 1)P (ν) = νn

n = 3, 4, ...

(2.7)

The reason why factorial moments are used is because the mathematical formalism
for neutron multiplicity counting is less cumbersome compared to central moments.
The derivation of the factorial moments is covered in Appendix section A.1.10 The
results for the first three factorial moments of the multiplicity distribution of emitted
neutrons are [27]:

10The main text follows all steps of the derivation that appear essential for the understanding of
neutron multiplicity counting. Other elements of the derivation are included in this dissertation
as well for completeness, but are presented in the Appendix to keep the main text concise.
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ν1 = M

1 + ανsf1
νsf1(1 + α) (2.8)

ν2 = M2

1 + ανsf1

�
νsf2 +

�
M − 1
νi1 − 1

�
νsf1(1 + α)νi2

�
(2.9)

ν3 = M3

1 + ανsf1
{νsf3 +

�
M − 1
νi1 − 1

�
[3νsf2νi2 + νsf1(1 + α)νi3]

+ 3
�
M − 1
νi1 − 1

�2
νsf1(1 + α)ν2i2} (2.10)

where νsfn and νin are the factorial moments of the spontaneous fission and induced
fission multiplicity distributions, respectively.

2.3.2 Extraction of correlated moments from the measurement

Next, it must be considered that neutron detectors have a limited detection efficiency
�. Due to � < 1, not all of the emitted neutrons are detected, as discussed in
Appendix section A.2. Furthermore, the probability of one of the emitted neutrons
triggering a gate and subsequent neutrons being detected within the finite gate
length must be considered (see Appendix section A.3). r(i) denotes the probability
distribution of counting i correlated neutrons (i.e. from one “superfission”) after a
trigger. Its factorial moments rn are derived in Appendix section A.3:

r1 = �fd · ν2

2ν1
(2.11)

r2 = �2ft · ν3

3ν1
(2.12)

where fd = e−PD/τ (1 − e−G/τ ) (2.13)
ft = f 2d (2.14)

where equation 2.14 is true if f(t) can be described by equation 2.2 which usually is a
good approximation [19, p. 459]. A physical interpretation of fd and ft will be given
later. The derivation until this point is correctly performed by Ensslin et al. [21] and
is the most frequently cited one. In their further considerations, their description of
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the process is somewhat ambiguous. Here, these ambiguities are resolved. So far,
it has been assumed that only neutrons from one “superfission” event contribute to
the detected neutrons in one gate. In reality, neutrons from different “superfission”
events may overlap and are detected in the same gate. They must be considered
as background neutrons. In fact, the multiplicity distribution k(i) which is the
distribution measured in a gate opened by a trigger event (factorial moments kn)
consists of the following: First, there are correlated neutrons, i.e. belonging to the
same “superfission” event as the trigger neutron with the probability distribution
r(i) and its factorial moments rn. Second, there are background neutrons which
belong to a “superfission” event that is not the same as the one the trigger neutron
came from. Background neutrons follow the probability distribution b(i) with its
factorial moments bn. When measuring one neutron in addition to the trigger,
it might either be a correlated or a background neutron. When measuring two
neutrons, they might be both correlated neutrons, both background neutrons, or
one correlated and one background neutron. In the following, this expression is
given in mathematical terms; additionally it can be generalized as shown [24]:

k(1) = r(1)b(0) + r(0)b(1); k(2) = r(2)b(0) + r(1)b(1) + r(0)b(2) (2.15)

k(m) =
m�

i=0
r(m− i)b(i) (2.16)

An equivalent expression can be given based on the factorial moments of these
probability distributions, as shown in [25, eq. (81)]:

kn =
n�

j=0

�
n

j

�
rjbn−j (2.17)

This expression can be evaluated for n = 0, n = 1 and n = 2. Recognizing that rj

and bn−j are normalized, one obtains

r1 = k1 − b1 (2.18)
r2 = k2 − b2 − 2(k1 − b1)b1 (2.19)

20



With this, one can describe the three central quantities used in neutron multiplicity
counting which are the Singles, Doubles and Triples rates S, D and T : The Singles
rate is the total detection rate of neutrons. It corresponds to the rate of “superfis-
sions” (equation 2.4) multiplied by the detection efficiency and the average number
of neutrons emitted per “superfission”:

S = F (1 + ανsf,1)�ν1 (2.20)

Experimentally, S also corresponds to the number of triggers and therefore the
number of opened correlated gates since every detected neutron opens a gate. From
equations 2.11, 2.18 and 2.20 one obtains D; from equations 2.12, 2.19 and 2.20 one
obtains T :11

D = F (1 + ανsf,1) · �
2fd · ν2

2 = S · r1 = S · [k1 − b1] (2.21)

T = F (1 + ανsf,1) · �
3ft · ν3

6 = S

2 · r2 = S

2 [k2 − b2 − 2(k1 − b1)b1] (2.22)

The right side of the equations shows how the rates are extracted experimentally:
The multiplicity distribution k(i) and its factorial moments kn is the measurement
result of the R+A gate, while b(i) and bn is the result of the A gate. The equations
also reveal the physical meaning of S, D and T : They can be interpreted as the
factorial moments of the emitted neutrons (νn) multiplied by the rate of “superfis-
sions” (Rs = F (1 + α · νsf1)) taking the detection process (�, fd, ft) into account.
fd and ft indicate that not all neutrons from one “superfission”, even if they are
captured in the detector, fall into the gate as some might be detected after the gate
has been closed: It can be shown [22] that fd and ft correspond to the fraction of
D and T counted in the finite gate compared to an infinitely long one:

fd =
D

D∞
(2.23)

ft =
T

T∞
(2.24)

Finally, using equations 2.8, 2.9, 2.10, 2.20, 2.21 and 2.22, the equations for S, D
11The factor 1/2 in the Triples rate is introduced as a matter of convention.
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and T become

S =F�Mνsf1(1 + α) (2.25)

D =F�
2fdM

2

2

�
νsf2 +

�
M − 1
νi1 − 1

�
νsf1(1 + α)νi2

�
(2.26)

T =F�
3ftM

3

6 {νsf3 +
�
M − 1
νi1 − 1

�
[3νsf2νi2 + νsf1(1 + α)νi3] +

3
�
M − 1
νi1 − 1

�2
νsf1(1 + α)ν2i2} (2.27)

2.3.3 Calculating the plutonium fissile mass

With equations 2.25, 2.26 and 2.27, the unknown properties M , F and α can be
calculated from the measured S, D and T , as shown in Appendix section A.4. With
F , the plutonium effective mass can be calculated:

m240eff =
F

479.1 fissions/(s · g) (2.28)

It is the mass of Pu-240 that would give the same response as that obtained from all
the even isotopes in the actual sample. m240eff needs to be converted to the actual
total plutonium mass mPu. This calculation can be performed if the isotopic mass
fractions R238, R240 and R242 are known [21]:12

mPu =
m240eff

2.52 ·R238 +R240 + 1.68 ·R242
(2.29)

12The constants in the formula are determined from the relative spontaneous fission half-lives and
the relative neutron multiplicity distributions [19, p. 457].
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Chapter 3

Neutron Multiplicity Measurements of Plutonium
Samples

This chapter describes a measurement campaign at the PERLA laboratory, Joint
Research Centre, Ispra, from 23 April - 4 Mai 2012. Neutron multiplicity measure-
ments have been conducted with a variety of plutonium samples.

3.1 He-3 Detector

Detectors commonly used in the context of nonproliferation, arms control and nu-
clear security are based on He-3. There is a growing range of alternatives, see for
example [28]. While the author has also published a feasibility analysis of using
other detectors in the field of warhead authentication [29], this dissertation is lim-
ited to He-3 detectors as it has clear advantages. Though being aware of the need
of He-3 replacement technologies as the availability of He-3 has become very lim-
ited, existing He-3 systems remain available. Therefore, they could still be used
for warhead and warhead component authentication, given the importance of the
task.

The main advantage of He-3 detectors is their large neutron detection efficiency �.
It is due to the large cross-section of the detection reaction 3He(n, p)3H at thermal
neutron energies (see Fig. 3.1) . The 3He(n, p)3H reaction releases 765 keV . The
proton and triton are charged particles; thus they ionize and excite atoms along their
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Figure 3.1: Cross-section of the 3He(n, p)3H reaction [10]

way until their energy is exhausted. By applying an electrical potential, the electrons
travel towards the anode and the ions towards the cathode which constitutes the
detection mechanism. Fig. 3.1 shows the reaction’s 1/

√
E dependence. It can be

seen that neutrons must be moderated to reach energies where the cross-section
is large. For this purpose, He-3 detectors contain high-density polyethylene where
neutrons scatter elastically. The He-3 is contained in tubes that are usually arranged
in rings, surrounded by polyethylene. With a too small amount of polyethylene, on
the one hand, � is below the optimum because neutrons are not ideally moderated.
With too much polyethylene, on the other hand, � is also lower than the optimal
value because moderated neutrons are captured in the polyethylene which outweighs
the positive moderation effect. In particular H-1 has a high thermal neutron capture
cross-section. This moderation process has a strong influence on the neutron travel
time f(t): The more polyethylene is between the cavity and a specific tube, the
longer is the die-away-time (τ ≈ 50 µs for typical He-3 detectors).

Fig. 3.2 shows a specific He-3 detector, the Passive Scrap Multiplicity Counter
(PSMC) [30] which has been used to conduct the measurements. The total size
of the detector is 661 x 661 x 942 mm with a cylindrical cavity (diameter 20 cm,
height 40 cm). The samples are placed in the cavity in the center. The detection
efficiency depends on the exact location of the source in the cavity as this influences
the neutron flux in the He-3 tubes. An aim of He-3 detector design is to minimize
this dependency and achieve an almost constant efficiency at all locations within
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Figure 3.2: The Plutonium Scrap Multiplicity Counter (left: Cut through the ver-
tical plane; right: Cut through the horizontal plane). White indicates
air or materials of little relevance for neutron transport, blue indicates
graphite, orange stainless steel, green polyethylene, the greenish yellow
He-3.

the cavity. The graphite component scatters neutrons that would otherwise escape
the detector. Some neutrons that scatter with the detector’s polyethylene may be
reflected back to the detector cavity. Cadmium has a large thermal neutron capture
cross-section. Due to the presence of a cadmium liner, neutrons that were thermal-
ized by elastic scattering with polyethylene and were reflected back are captured,
thereby reducing the rate of reflected neutrons in the cavity.

3.2 Plutonium Samples and Measurements

The PSMC in Ispra was characterized using plutonium samples in addition to a Cf-
252 source to ensure the validity of the calibration for the plutonium measurement
campaign. The results are shown in Table 3.1, where also the dead-time δ is given.1

1The reason for the different efficiencies are different energy spectra: Cf-252 spontaneous fission
spectra are different from Pu-239 and Pu-240 fission spectra; oxides have a contribution from
(α, n) neutrons which also have a different energy spectrum. The efficiencies are given for
samples placed in the center of the cavity. For one sample placed in different positions, � varies
by less than 1% at different radial locations and by less than 3% at different axial locations, it
varies less than 0.5% close to the center [31].
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PD 4.5 µs
G 64 µs
fd 0.6111
ft 0.3859
δ 44.3 ns

�
Pu metal: 0.561
Pu oxide: 0.546
Cf-252: 0.553

Table 3.1: Characteristics of the PSMC [30, 31]

These values have been used for the analysis (though δ is very short compared to
the neutron rates of the measured samples and is therefore insignificant).

During the campaign, three different types of sources have been measured. The
isotopic compositions were originally given for specific dates in the past. Because
of decay and corresponding ingrowth, they have been updated to the measurement
date. Table 3.2 shows the masses and isotopic compositions of those samples (one of
each type) that will be analyzed in more detail in this chapter. Complete information
on all sources are listed in Appendix Tables B.1 and B.2. In addition, a Cf-252 source
has been measured.

Three weapons-grade metal samples in cylindrical shape have been measured (“PM”
samples). The masses have been in the range of 10− 20 g. Two of the samples have
a Pu-240 content of about 4.5%, one has about 8.5%. The three samples are placed
in containers for safety reasons. First, they are surrounded by an aluminum capsule
which itself is in a stainless steel container. All containers are similar to the “PM1”
sample container (Fig. 3.3).

The “PERLA PuO2” samples are five oxide pellets with differing masses ranging
from 2 − 20 g and two different isotopic compositions (13% or 26% Pu-240). They
are surrounded by a 0.5 mm thick stainless steel encapsulation (see “PERLA PuO2
10” sample in Fig. 3.4).

The “CBNM” samples are four PuO2 pellets (5.5 g plutonium mass) of differing
isotopic compositions, ranging from 6% to 25% Pu-240. As a representative example,
the “CBNM 61” sample with its stainless steel container is shown in Fig. 3.5.

Altogether, the samples represent a sufficient range of isotopic compositions and
masses in order to ensure a meaningful test of MCNPX-PoliMi. After background
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type Pu mass [g] isotopic composition [Pu wt-%]

PM1 metal 12.5 ± 0.3

Pu-238: 0.004 ± 0.0004
Pu-239: 95.420 ± 0.029
Pu-240: 4.529 ± 0.032
Pu-241: 0.032 ± 0.0006
Pu-242: 0.015 ± 0.002
Am-241: 0.245 ± 0.001

PERLA PuO2 10 oxide 1.99

Pu-238: 0.058
Pu-239: 86.082
Pu-240: 13.270
Pu-241: 0.321
Pu-242: 0.270
Am-241: 1.483

CBNM 61 oxide 5.55 ± 0.04

Pu-238: 1.028 ± 0.003
Pu-239: 65.837 ± 0.028
Pu-240: 26.698 ± 0.024
Pu-241: 2.020 ± 0.009
Pu-242: 4.418 ± 0.006
Am-241: 6.357 ± 0.014

Table 3.2: Characteristics of measured samples (personal communication Dr. Paolo
Peerani); uncertainties are listed where available.

M α mPu [g]
PM1 1.080 ± 0.001 −0.002 ± 0.006 12.753 ± 0.062

PERLA PuO2 10 1.024 ± 0.001 0.674 ± 0.006 1.958 ± 0.009
CBNM 61 1.030 ± 0.001 0.994 ± 0.006 5.473 ± 0.020

Table 3.3: PSMC measurement results

radiation subtraction, measurements that were at least 1000 seconds long have been
performed for all samples. The samples have been placed in the center of a 16 cm
spacer, so that they have been in the middle of the detector cavity. All measure-
ment results (S, D and T ) are shown in Appendix Table B.3. The values for M ,
α and mPu which result from the analysis of the measurement results are shown in
Table 3.3. Comparing these results to Table 3.2, it is evident that neutron multi-
plicity counting can successfully distinguish between metals and oxides (see α) and
determine mPu for low masses and multiplications.2 The magnitude of potential
systematic uncertainties appear to be low for the discussed measurements because
the deviations between measured and characterized plutonium masses are small.

2Only some of the measurement results are shown here as a summary; none of the other mea-
surement results show significantly higher deviations between measured and characterized plu-
tonium masses.
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Figure 3.3: “PM1” sample; the outside container has a total height of 90 mm.

Figure 3.4: “PERLAPuO2 10” sample; the outside container has a total height of
79.5 mm.

Figure 3.5: “CBNM 61” sample; the Pu oxide has a total height of 3.75 mm.
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Chapter 4

Monte Carlo Simulation Capacity

Different configurations of items and surrounding materials must be assessed in
order to study potential sources of neutron multiplicity counting bias for plutonium
warhead and warhead component authentication. Monte Carlo simulations had
to be the main tool for such an analysis, as only a very limited choice of sample
configurations was available for measurements. For this purpose, the MCNPX-
PoliMi code [32] has been used. As a first step, it has been assessed to which extent
MCNPX-PoliMi is suited to simulate neutron multiplicity measurements. This has
been done by comparing simulation results to the measurement results of section
3.2.

4.1 Simulation tools

4.1.1 MCNPX-PoliMi

The MCNPX-PoliMi code is a modification of the MCNPX code. MCNPX [33] is a
Monte Carlo radiation and particle transport code. The user defines the geometry
of a problem (for example sample and detector), the material properties within ge-
ometry cells, reaction cross-sections to be used with the simulation and the desired
output data. Furthermore, a radiation or particle source must be defined (for exam-
ple spontaneous fission or (α, n) neutrons), including the source geometry/position,
type and energy of emitted particles. Unless otherwise stated, cross-sections from
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the ENDF/B-VII.1 library [10] have been used.

MCNPX-PoliMi is capable of simulating neutron multiplicity counting measure-
ments: For defined cells (e.g. He-3 detector tubes), it can record a list of reaction
events (e.g. neutron capture) and the time when these events occurred [34]. This
pulse train data can then be further analyzed to produce S, D and T , see the next
sub-section.

MCNPX-PoliMi samples the number of prompt neutrons from appropriate multiplic-
ity distributions for each spontaneous and induced fission event [32]. Spontaneous
fission multiplicity data from [17] are implemented for Cf-252 and Pu-240. For Pu-
239 induced fission, different data sets can be chosen, in particular data based on
models from Terrell [16] or Zucker and Holden [18]. Terrell assumes a Gaussian mul-
tiplicity distribution with a constant standard deviation. Since Zucker and Holden
show that the standard deviation depends on the energy of the incoming neutron
(see also sub-section 2.1.1), the Zucker and Holden data have been used for all
simulations. Furthermore, (α, n) sources with neutrons that follow the appropriate
energy spectra [35] can be adopted as a source.

4.1.2 Implementation of the multiplicity analysis

A tool that is part of the MCNPX-PoliMi package capable of deducing S, D and
T from the pulse train is delivered, but the source code has not been available and
having the option to apply changes in the analysis was desired. For this reason, a
MATLAB code has been written in order to conduct this analysis and deduce M ,
α and mPu.1

First, the code calculates the R+A and A gate distributions. For this step, it
requires the input parameters PD and G. For every neutron pulse, it counts all
recorded neutron pulses which occurred between PD and PD + G after the time
of the trigger neutron pulse. The A gate distribution is obtained from the neutron
pulses counted from 1024 µs after the R+A gate was opened during the gate length
G. After normalization, these distributions correspond to k(i) and b(i). Then, the
code calculates S, D and T according to equations 2.20, 2.21 and 2.22 and calculates
M , α and mPu when the required parameters �, fd, ft as well as νsfn and νin and

1Matthew McArthur helped develop the MATLAB code during his internship at ZNF in 2013.
He has also written a manual for using the code.
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the isotopic composition are provided. Calculating M , α and mPu from the R+A
and A gate is called “multiplicity analysis” in the remainder of this dissertation.
The MATLAB code has been compared with the MCNPX-PoliMi package tool; the
S, D and T rates have been found to be in agreement up to four decimal units.

4.2 Thermal Neutron Scattering

First simulations using MCNPX-PoliMi and the MATLAB multiplicity analysis have
been performed. A draft of the PSMC geometry has been implemented in MCNPX-
PoliMi together with the sample geometries. All measurement configurations have
been simulated. With standard nuclear cross-sections (ENDF/B-VII.1 [10]), one
obtains large deviations between multiplicity measurements and simulations. The
D and T rates are systematically overestimated by 6-17% and 10-35%, respectively,
which would render multiplicity simulations essentially useless. Such deviations
cannot be explained by systematic uncertainties of the detector characterization.

The reason for these deviations has been identified in the simulated neutron mod-
eration process in polyethylene. For thermal neutrons, the de-Broglie wavelength
becomes sufficiently large that they interact with the polyethylene’s molecular struc-
ture. Automatically, however, MCNPX-PoliMi only includes scattering of neutrons
with nuclei. There is elastic and inelastic scattering with the molecular structure.
In this case (and in contrast to elastic scattering on free atoms), elastic scattering
does not include kinetic energy transfer between the neutron and the scatterer, since
the scatterer’s mass (considering the entire solid) is much larger than the neutron’s.
Inelastic scattering results in an energy loss or gain of the neutrons. Since the scat-
terer is in thermal motion, it can actually transfer energy to a thermal neutron.
The neutron can transfer energy to the scatterer and thereby excite it which can be
described by phonon excitation in the case of polyethylene [36]. A single neutron
may excite a couple of phonons, or no phonons at all. The latter is the case of elas-
tic scattering. Based on this model, cross-sections for thermal neutron scattering
in polyethylene can be derived as detailed in Appendix C. These can be called by
MCNPX-PoliMi upon user input. If this option is chosen, the code overwrites the
nuclear cross-sections with the appropriate data below 4 eV [33, 37]. The agreement
between theory and experiment is excellent, as can be seen from Fig. 4.1. It also
shows the significant difference between the cross-sections of scattering with the
nucleus and the molecular structure.
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Figure 4.1: The derived (black line) and measured (dots) total cross-section of scat-
tering with the polyethylene’s molecular structure is shown, taken from
Sprevak and Koppel [38]. The red line represents the total nuclear cross-
section [10].

4.3 Simulation Results

The detector geometry implemented in MCNPX-PoliMi is based on available sketches
from the detector manufacturer [30]. Unfortunately, the resolution of the sketch is
low and no further information could be obtained. Therefore, MCNPX-PoliMi sim-
ulations have been used to optimize the implemented detector design. A variety
of parameters whose values were not accurately known has been identified. These
have been varied in plausible ways to obtain the optimal parameters yielding the
best simulation results while ensuring consistency with all available information.
Table 4.1 shows the simulation results, the comparison to experimental values and
the systematic and statistical uncertainties for the introduced choice of samples,
while Table B.3 in the Appendix shows the simulation results of all samples. The
uncertainties are discussed in the next sub-section.
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4.3.1 Systematic and statistical uncertainties

Systematic uncertainties arise from unknown details of the detector design, the
sample properties, and nuclear data used in the analysis. Concerning the detector
design uncertainties, a sensitivity analysis was performed in order to obtain uncer-
tainty assessments for individual parameters during the optimization process of the
simulated detector design. For the sample properties uncertainties, information was
either available or a sensitivity analysis has been performed as above. For nuclear
data uncertainties, published information has been used. The systematic uncertain-
ties are shown in Table 4.3. Their influence on the S, D and T rates is listed in
Table 4.1.

It also shows that the statistical uncertainties of both the simulations and mea-
surements are very small compared to the systematic uncertainties. Nevertheless,
this is treated here in more detail. Three different probability density functions
were evaluated (Poisson distribution, multinomial distribution, semi-empirical ap-
proach). All presented functions were implemented in the MATLAB multiplicity
analysis code.2

In the experiment, a measurement consists of multiple runs. Each run measures a
multiplicity distribution, from which the S, D and T values are obtained. Their
mean and standard error are calculated. The mean of the standard errors S.E. from
all the conducted measurements and its standard error are

S.E.S = (0.16 ± 0.11)%
S.E.D = (0.36 ± 0.18)%
S.E.T = (1.05 ± 0.55)%

(4.1)

For individual simulations, an appropriate model must be chosen for the uncertainty
prediction. In Poisson statistics, the uncertainty for a count rate Gi of multiplicity
i of the multiplicity distribution G(i) is given as

var(Gi) = Gi (4.2)

2They were implemented by Matthew McArthur during his internship at ZNF.
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Type Influence Estimate
vertical
position of
He-3 tubes

Influence on � as neutron flux density from a source placed
in the middle of the detector is different at various tube
heights - being maximal at the same height as the source.

±1 cm

horizontal
position of
He-3 tubes

Influence on � and gate fractions. The closer the He-3
tubes are to the cavity, the smaller is the die-away time
as neutrons travel through less polyethylene before being
detected, thus increasing the gate fraction. Through the
change in moderation, � is affected due to neutron
spectrum changes and capture by hydrogen.

±4 mm

polyethylene
density

Influence on � and the gate fractions due to neutron
moderation and capture.

±0.5%

pressure of
the He-3 gas

Direct influence on �. ±1%

cadmium
liner
thickness

Detection rates increase significantly only after reducing
the thickness by a factor 10.

none

position of
the sample
within the
cavity

� depends very little on the sample position, the position
was measured well.

none

uncertainties
from the gate
electronics

The gate lengths were slightly changed, but in all cases
the results were much worse than for a gate length of
64 µs so that it is assumed that the simulated gate
lengths were exact.

none

sample mass
and isotopic
composition

These uncertainties mainly influence the spontaneous
fission rate and the multiplication.

see
Table
4.1

sample safety
containers

Reasonable variations in the container designs were
simulated; the influence was negligible.

none

fission and
(α, n) rates

Uncertainty data for Cf-252 and Pu-240 fission and
plutonium oxide (α, n) rates are available, see 2.1.

see
Table
4.1

multiplicity
distribution
moments for
spontaneous
and induced
fission

The values of the moments of Pu-239, Pu-240 and Cf-252
are based on the mean value of various measurements.
The standard deviation is larger than the individual
statistical uncertainties [39] and indicated the
uncertainties of the moments. In addition, the induced
fission moments of Pu-239 depend on the energy of the
incoming neutron (see sub-section 2.1.1). As the exact
neutron spectrum is usually not known in experiments,
additional uncertainties are introduced, as detailed in
sub-section 5.1.

see
Table
4.1

Table 4.3: Description and estimation of systematic uncertainties
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The variance of S, D and T is calculated by error propagation. However, neutron
multiplicity counting does not follow Poisson statistics. As more than one neutron
may be emitted with one fission event, not all detected neutrons are independent
of each other. The counting technique introduces further correlations, because the
same neutron may be counted in more than one gate as more than one gate may be
open at the same time. Accordingly, Poisson statistics underestimate the variance.

The multinomial distribution is an often cited model for neutron multiplicity count-
ing, see for example [21, 40]. It assumes that every individual Gi exhibits a binomial
distribution and that the total neutron count rate ΣGi = S does not have an associ-
ated uncertainty (σS = 0). In addition to the variances, this introduces covariances
between the count rates of the individual multiplicities [41]:

var(Gi) = Gi − G2i
S

cov(Gi, Gj) = −Gi ·Gj

S
< 0 (4.3)

The variances of S, D and T are again obtained from the error propagation

cov(S,D, T ) = A · V · AT (4.4)

where A is the matrix of the partial derivatives ∂S/∂Gi, ∂D/∂Gi and ∂T/∂Gi, AT

is the corresponding transposed matrix and V is the matrix of the covariances of
the individual multiplicities. As σS = 0 does obviously not reflect reality, var(S)
must be calculated by different means. It is reported in [41] that the multinomial
approach yields the best uncertainty results compared to other approaches. One
could disagree with this conclusion as the multiplicity variances of the multinomial
distribution are even smaller compared to the Poisson distribution:

Gi − G2i
S
< Gi (4.5)

For var(D), all derivatives of matrix A are positive.3 Therefore, the contribution
from the multiplicity variances is positive. Accordingly, the contributions from the
multiplicity covariances are all negative as cov(Gi, Gj) < 0. With this result and

3Matthew McArthur helped calculate the derivatives during his internship at ZNF.
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equation 4.5, it is clear that the var(D) using multinomial statistics is smaller com-
pared to Poisson statistics. For var(T ), the same applies except for a few covariance
terms having a positive contribution, but the negative effect dominates.4 It is dif-
ficult to understand how the multinomial distribution should be preferred over the
Poisson distribution realizing that the Poisson distribution already underestimates
the variance.

A third uncertainty model is the semi-empirical approach which adds a correction
factor to the Poisson uncertainty. The starting point is an attempt to describe the
expected variance theoretically exact (as shown in [42]). Until to-date, however,
the theory must be backed up by empirical corrections to agree with measurement
results. The variances are [41, 43]

var(S) = (1 + �ν2

ν1
) · var(S)Poisson = (1 + 2D

fd · S ) · var(S)Poisson

var(D) = (1 + 4γ�ν2

ν1
) · var(D)Poisson = (1 + 8γD

fdS
) · var(D)Poisson

var(T ) = (1 + 5γ�ν2

ν1
) · var(T )Poisson = (1 + 10γD

fdS
) · var(T )Poisson

γ = 1 − (1 − e−G/τ )
G/τ

(4.6)

The standard deviations of all models have been calculated with the MATLAB code
for all measured samples and can be compared to the experimental standard errors.
For each sample, the deviation between the three models (theoretical uncertainties)
and the experimental value have been calculated. The deviations vary extensively
among the different samples, however no systematic trends were found between the
individual samples. Therefore the means of the deviations of all samples are given
along with the corresponding standard errors, see Table 4.4. The mean deviations
of S, D and T between the standard deviations calculated with the semi-empirical
model and the experimental standard errors are the smallest. It must be taken into
account, though, that the standard errors of these deviation means are very large.5

Accordingly, the statistical uncertainties in Table 4.1 have been calculated with the
semi-empirical approach, as have been all statistical uncertainties of simulations
stated in this dissertation.

4Ibid.
5This is not dramatic as the statistical uncertainties themselves are very small in these cases.
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deviation [%]
S, Poisson −36.0 ± 31.4

S, Semi-empirical −13.8 ± 40.9
D, Poisson −20.4 ± 22.3

D, Multinomial −28.4 ± 20.5
D, Semi-empirical −1.4 ± 25.3

T, Poisson −13.4 ± 51.6
T, Multinomial −14.4 ± 51.2
T, Semi-empirical 12.3 ± 59.8

Table 4.4: Deviations between theoretical statistical uncertainty predictions and ex-
perimental uncertainties

4.3.2 Simulation capacity assessment

Having studied simulated results as well as the systematic and statistical uncer-
tainties, the MCNPX-PoliMi simulation capacity can be assessed. The calculated
means of the deviations between simulation and measurement from all samples and
the standard errors are

ΔS = (−2.3 ± 3.2)%
ΔD = (2.9 ± 3.5)%
ΔT = (5.4 ± 9.4)%

(4.7)

Although the identified uncertainties of the individual samples vary somewhat as can
be seen from Table 4.1, they are similar and the standard errors of ΔS,ΔD and ΔT
appear to be in agreement with the systematic and statistical uncertainties addressed
in Tables 4.1 and 4.3. It is refrained from performing an exact error propagation
as various correlations of errors are difficult to quantify. The uncertainty from the
horizontal tube position alone suffices for explaining the overall uncertainty.

As the standard errors of ΔS,ΔD and ΔT are larger than ΔS,ΔD and ΔT them-
selves, the conclusion is that the relevant uncertainties were identified, i.e. that
potential additional uncertainties only have a minor influence. As the simulated
results with their uncertainties are in agreement with the experimental results, it is
concluded that the MCNPX-PoliMi code is suited for multiplicity simulations and
that the implemented detector model is reasonably accurate. With this confidence,
further simulations have been conducted to study potential sources of bias in neutron
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multiplicity counting.
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Chapter 5

Neutron Multiplicity Counting Bias

This chapter studies sources of bias in neutron multiplicity counting to test the
reliability of the technique. This is done particularly in regard to authentication
of warheads and warhead components: With the limited and automated output of
an information barrier, measurement results are not directly shown. Therefore, a
very high reliability of the measurements is required as they cannot be evaluated
afterwards by the inspectors.

One type of bias has previously been researched and is physically well understood: It
concerns inadequate knowledge of parameters required for the multiplicity analysis.
For example, systematic uncertainties may be associated with parameters deter-
mined from the detector calibration. Bias from inadequate knowledge of parameters
is discussed in section 5.1.

As neutron multiplicity counting is usually used for samples that do not have large
masses and volumes (i.e. highly multiplicative samples), open research questions
regarding the feasibility for highly multiplicative samples remain. Therefore, it
is also examined if additional bias occurs when large samples such as warheads or
warhead components are measured. The focus is on the fundamental basis of neutron
multiplicity counting: It is researched whether the physics of the neutron source is
accurately described by the neutron multiplicity counting equations (derivation in
sub-section 2.3.1). It is also assessed how the magnitude of bias depends on the
specific sample configuration in order to assess the reliability of neutron multiplicity
counting when the sample configuration remains largely unknown.
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In section 5.2, potential bias of highly multiplicative samples without further ma-
terials between plutonium and the detector (which corresponds to bare warhead
components) is discussed. In section 5.3 it is shown what the influence of polyethy-
lene around the plutonium component is. This demonstrates relevant effects that
would occur in assembled warheads or warhead components located in a storage
container.

5.1 Bias from Inadequate Knowledge of Parameters

As can be seen from equations 2.25, 2.26 and 2.27, the parameters �, fd, ft, νsfn

and νin are required as input parameters in the multiplicity analysis to solve the
equations for M , α and F . �, fd and ft depend on the neutron energy spectrum,
the neutron transport from the fissile material to the detector and the detection
mechanism.

� depends on the spectrum of neutrons that leave the sample. Therefore, it is
influenced by the sample configuration: The reason is the energy-dependence of
the (n, p) cross-section of He-3. While � is generally influenced by the isotopic
composition as neutrons of different energies are emitted, the spectra of neutrons
emitted by Pu-239 and Pu-240 are similar, see Fig. 2.3. The effect will be minor
unless relevant amounts of other isotopes are present. � also depends on the sample
geometry as elastic and inelastic scattering within the sample changes the neutron
spectrum and as the reaction rate depends on the path lengths of the neutrons.
Moreover, (α, n) neutrons have a different energy spectrum than fission neutrons. If
there are further materials between the fissile material and the detector, scattering in
this material will also change the energy spectrum. Also, neutrons may be captured
in such materials thus reducing �. The PSMC’s efficiency � varies by about 5% for
neutron energies between 0.5 and 3 MeV [44].

fd and ft depend on the die-away time. The longer the die-away time, the smaller
is the fraction of counted D and T coincidences for finite gate lengths. The die-
away time is influenced by the measurement configuration: In particular moderating
material between fissile material and detector will have an impact on the neutron
lifetime. A study finds that the average time when induced fission occurs after
the beginning of the specific “superfission” is increased by over a factor 20 when a
7.5 cm thick beryllium reflector is present around the fissile material. It remains
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below 200 ns [45]. As this is a very thick reflector, the average time will not be
significantly higher for configurations relevant for this dissertation. Furthermore,
neutrons may be reflected back to the fissile material either from the detector’s
polyethylene or from materials between fissile sample and detector. Then, they can
undergo secondary reactions, with those neutrons being detected at a later time. To
reduce reflection from the detector’s polyethylene, a cadmium liner (see section 3.1)
can be used between detector and sample to limit this effect, but cadmium does not
prevent the reflection of fast neutrons.

The nuclear data uncertainties associated with νsfn and νin have been introduced
in Table 4.3. The νin depend on the energy of the neutron inducing fission (see sub-
section 2.1.1). By default, the standard software used for multiplicity measurements
[40] calculates with the data for 2MeV neutrons:

νi1 = 3.163 νi2 = 8.240 νi3 = 17.321 (5.1)

The accurate average induced fission moments are calculated according to

νin =
ˆ

νin(E) ·W (E) · wσ(E)dE (5.2)

so it corresponds to an average weighted over the neutron energy spectrum W (E)
and the probability of these neutrons to induce fission, i.e. the fission cross-section
normalized to unity wσ(E). In the following, νin always refer to the moments
averaged over the specific spectrum of a sample. When spectra vary at different
positions in the sample, they must be weighted accordingly:

W (E) = 1
V

ˆ

W (E,�r)dV (5.3)

The more is known about a sample in advance, the more accurate will the multi-
plicity counting analysis be. With sufficient knowledge, calibration sources could be
used that closely represent the actual sample for the determination of �, fd and ft. If
materials between fissile sample and detector will be present, this or similar material
can already be present during the detector calibration to include its effects. Monte
Carlo simulations could be performed to obtain the neutron spectrum in order to
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calculate νin. As the available information regarding warheads and warhead com-
ponents will be very limited, increased uncertainties need to be taken into account.
These effects are not evaluated further in this dissertation, as they are physically
understood.

5.1.1 Preparations for further bias studies

To study the physical effects of the plutonium sample in isolation from the sources
of bias introduced above, a theoretical “idealistic detector” has been simulated. The
according conditions are a detector that always satisfies � = fd = ft = 1, that
reflection of neutrons back to the source is minimized and that the accurate average
induced fission moments νin are used.

A hollow sphere of He-3 with an extraordinarily large density of 10 g/cm3 has been
assumed. The inner and outer radii have also been extraordinarily large (20 m
and 40 m). He-3 both moderates the neutrons and subsequently captures them.
Because of the high density and the large volume, � = 1 is obtained, regardless
of the emitted neutron energy spectrum. MCNPX-PoliMi simulations demonstrate
that no neutrons escape the detector in the outward direction.

The gate fractions fd and ft both equal unity when the simulated gate length is
sufficiently long to count all coincidences. MCNPX-PoliMi simulations show that
the die-away time of this detector for an unshielded 252Cf source is 5.6µs. Gate
lengths of G = 1000µs have been applied with PD = 0 µs for all simulations
discussed throughout this chapter.

Reflection of neutrons from the detector back to the sample is minimized due to the
large detector cavity. For a neutron escaping the detector surface in the direction
of the cavity, the solid angle of the sample is very small for all reasonable sample
dimensions. For a plutonium sphere with a 4.9 cm radius, MCNPX-PoliMi simula-
tions show that 8 · 10−5 % of the neutrons reaching the detector are reflected back
and re-enter the plutonium sphere, which is negligible.

The νin have been calculated for induced fission of Pu-239 assuming the Pu-239
neutron energy spectrum (see Fig. 2.3). With equation 5.2 the result is
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Figure 5.1: Neutron energy spectrum of Pu-239 induced fission (blue) and of a 1000
g plutonium metal solid sphere (red)

νi1 = 3.209 νi2 = 8.571 νi3 = 18.740 (5.4)

This result could be used for further simulations of different metals containing Pu-
239 and Pu-240 if the following assumptions (a) and (b) were reasonable:

(a) it must be assumed that the neutrons that induce fission follow the Pu-239
fission energy spectrum. While the Pu-239 induced fission and Pu-240 spontaneous
fission spectra are very similar, the effect of neutron moderation must be taken into
account: The neutron spectrum of a solid plutonium metal sphere (1000 g, 94%
239Pu, 6% 240Pu, ρ = 19.8 g/cm3, radius 2.29 cm) has been simulated. In Fig. 5.1,
this spectrum is compared to the Pu-239 induced fission spectrum. The simulated
spectrum is slightly shifted towards lower energies. The neutron moderation is
mostly the result of inelastic scattering: Elastic scattering in plutonium results in a
small energy change and has very little relevance, see sub-section 2.1.2. The induced
fission moments for the simulated spectrum are

νi1 = 3.183 νi2 = 8.420 νi3 = 18.196 (5.5)

The effect of inelastic scattering on the neutron spectrum depends on the precise
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sample configuration. The 1000 g solid sphere is one of the samples with the longest
neutron path lengths simulated in this dissertation. It therefore represents a rather
pessimistic estimate of how the moments can differ. For most simulations, the
moments will be between equations 5.4 and 5.5. As the difference is tolerable it is
concluded that assumption (a) is reasonable.

(b) it must be assumed that induced fission in Pu-240 is negligible. This is reasonable
in particular due to the similar multiplicities compared to Pu-239 [10], the somewhat
lower cross-section compared to Pu-239 (Fig. 2.1 and 2.2) and because there is
significantly less Pu-240 than Pu-239 in all reasonable samples. Therefore, the
according data will be used in the multiplicity analyses below. Assumptions (a) and
(b), however, introduce a small bias.

The simulations do not consider dead-time effects. Due to the small dead-time
of the PSMC (44.3 ns [31]), it is irrelevant for small samples. Dead-time and its
uncertainties should be taken into account for experiments with larger samples [46].
Dead-time correction procedures remain a research issue, see for example [47].

5.1.2 Simulation uncertainties

With the introduced detector configuration, the systematic uncertainties differ from
those discussed in sub-section 4.3.1: As � = fd = ft = 1, they do not introduce
uncertainty. After having calculated νin, the nuclear data used in the multiplicity
analysis are in agreement with the data used in the MCNPX-PoliMi simulations.
As long as parameters remain identical both in the simulation and the multiplic-
ity analysis, no bias is introduced.1 This leaves minor systematic uncertainties in
addition to the statistical uncertainties.

To test this, two MCNPX-PoliMi simulations have been performed with the “ide-
alistic detector” and the samples placed in the cavity’s center. A solid sphere of
20 g plutonium has been simulated (94% 239Pu, 6% 240Pu, ρ = 19.8 g/cm3, radius
0.622 cm) and a hollow sphere with the same mass, density and isotopic composition
(inner radius 3.5 cm, outer radius 3.5065 cm). The simulated measurement time has
been 3600 s. M , α and mPu have been calculated from the multiplicity analysis
using S, D and T (indicated by subscript “mult”) and compared to the real data

1Once a simulation is compared to a measurement, however, nuclear data uncertainty must be
considered.
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20 g solid sphere 20 g hollow sphere
S [1/s] 1361.4 ± 1.1 1244.5 ± 1.0
D [1/s] 1603.2 ± 3.9 1111.8 ± 3.1
T [1/s] 1568.0 ± 6.7 536.3 ± 4.7
Mmult 1.0988 ± 0.0004 1.0048 ± 0.0003
αmult -0.001 ± 0.004 0.000 ± 0.004

mPu,mult [g] 20.02 ± 0.09 20.01 ± 0.08
Mtrue 1.0996 1.0052
αtrue 0.000 0.000

mPu,true [g] 20.00 20.00
ΔM [%] -0.07 ± 0.04 -0.04 ± 0.03
ΔmPu [%] 0.10 ± 0.45 0.05 ± 0.40

Table 5.1: Multiplicity analysis results for two simulations

(subscript “true”): mPu,true was known from the MCNPX-PoliMi input, αtrue = 0
as no oxides are present and Mtrue has been determined from the MCNPX-PoliMi
output directly without the multiplicity analysis. The results are shown in Table
5.1, where also the deviations between multiplicity analysis and true values ΔM
and ΔmPu are given.

The mass deviations are smaller than their uncertainties, the multiplication devi-
ations are slightly larger. This can be explained by the νin uncertainty addressed
above. The deviations in both cases remain very small; the data does not indicate
additional systematic uncertainties. This demonstrates that the utilization of the
“idealistic detector” and the implemented νin data give excellent results. With-
out adapting the usually used 2 MeV νin data, the fissile mass is overestimated by
around 3%, as calculations carried out for this work show.

5.2 Bias for Highly Multiplicative Plutonium Samples

To study bias, MCNPX-PoliMi simulations of solid and hollow spheres of mostly
weapons-grade configurations of plutonium have been analyzed. It has been assumed
that these configurations are suited to study effects that would similarly occur in
warhead components (see for example [48]).

To study the multiplication process of the samples, neutron production and absorp-
tion rates have been determined from simulations. Neutrons produced in addition
to spontaneous fission and (α, n) neutrons mainly come from induced fission, while
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other reactions have reaction rates which are negligible for the analyses here. This
neutron production rate per volume can be given as

P (−→r ) = N ·
ˆ

Φ(E,�r) · νi1(E) · (R239 · σ239Pu fis(E) +R240 · σ240Pu fis(E)) dE (5.6)

whereN is the number of targets per unit volume, Φ(E,�r) is the neutron flux density,
R239 and R240 are the isotopic fractions of Pu-239 and Pu-240 and σ239Pu fis(E)
and σ240Pu fis(E) are the Pu-239 and Pu-240 induced fission cross-sections. Only
these two isotopes are present in all following simulations. If further isotopes were
present, they would need to be included in this and the following equations. P (�r)
is a function of the position �r within the sample. In P (�r), only the newly produced
neutrons from induced fission are considered, not the absorption of neutrons that
induce fission. Including these and all further neutron absorption events in the cross-
sections σ239Puabs(E) and σ240Puabs(E), the neutron absorption rate per volume is

A(�r) = N ·
ˆ

Φ(E,�r)·{R239 · (σ239Pu fis(E) + σ239Puabs(E))

+R240 · (σ240Pu fis(E) + σ240Puabs(E))}dE
(5.7)

The net number of neutrons Nprod produced in the entire volume corresponds to

N(�r) = P (�r) − A(�r)

Nprod =
ˆ

N(�r)dV
(5.8)

The multiplication in the sample (total rate of neutrons leaking the sample divided
by rate of primary neutrons, see sub-section 2.3.1) is expressed by

M = νsf1F +Nα +Nprod

νsf1F +Nα

(5.9)

The multiplication calculated with this equation corresponds to Mtrue. Besides
taking into account neutrons from spontaneous fission and (α, n) reactions, the
numerator includes Nprod which is the number of neutrons produced by induced
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fission, taking into account neutron leakage,2 subtracted by the number of absorbed
neutrons. This shows the agreement with the explanation of the multiplication in
sub-section 2.3.2. Table 5.2 shows the multiplicity analysis results performed after
MCNPX-PoliMi simulations of the “idealistic detector” and solid and hollow sphere
samples containing 94% Pu-239 and 6% Pu-240 (ρ = 19.8 g/cm3) of varying masses.
The inner radius of the simulated hollow spheres is rin = 3.5 cm, the outer radii rout
of the solid and hollow spheres vary according to the masses.

In both simulation series, the multiplication increases with sample mass as is ex-
pected. For the hollow spheres, the same multiplication values correspond to larger
masses than for the solid spheres. For small multiplications, the multiplicity analy-
sis results agree with the true values either within their statistical uncertainties or
are slightly larger, which can be explained by the νin uncertainties. However, as
mPu,true and Mtrue become larger, Mmult is overestimated and mPu,mult underesti-
mated. Comparing the solid and hollow spheres it can be seen that the deviation
is neither a simple function of M nor mPu. In the simulations, the multiplication
is overpredicted by as much as 5%, the mass is underpredicted by as much as 20%.
Both deviations cannot be explained by the statistical uncertainties and increase
with increasing mass/multiplication.

5.2.1 Spatially variant multiplication

The mPu,true = 1000 g solid sphere and mPu,true = 6000 g hollow sphere have been
analyzed in more detail to understand the physics of these samples. Both have a
fairly high mass bias so it should be possible to observe relevant systematic effects,
furthermore differences between the different geometries can be studied. In the
multiplicity analysis it is assumed that all spontaneous fission and (α, n) neutrons
have the same multiplication, irrespective of the position of their emission �r. This
can be seen from equation 2.6 where p, and accordingly M , are considered constant
parameters. This assumption is called the “point model” [27]. To test the hypothesis
that this issue is the reason of the bias, the dependence of M on �r has been studied
and is presented in this sub-section.

2Neutron leakage is automatically included as Nprod is based on the neutron flux density which
is obtained from MCNPX-PoliMi simulations of the precise geometry. Not including neutron
leakage would correspond to a case where all neutrons would be reflected back once they leak
a sample corresponding to an increased neutron flux density. This is not the case in the
simulations.

48



M
tr
u
e

m
P
u
,t
r
u
e
[g
]

M
m
u
lt

m
P
u
,m

u
lt
[g
]

Δ
M

[%
]

Δ
m

P
u
[%
]

so
lid

1.
09
96

20
1.
09
88

±
0.
00
04

20
.0
2

±
0.
09

−
0.
07

±
0.
04

0.
1

±
0.
4

1.
14
26

50
1.
14
43

±
0.
00
04

49
.7
3

±
0.
22

0.
14

±
0.
03

−
0.
5

±
0.
4

1.
18
87

10
0

1.
18
41

±
0.
00
04

95
.6
6

±
0.
44

−
0.
39

±
0.
03

−
4.
3

±
0.
5

1.
39
97

50
0

1.
42
35

±
0.
00
05

46
9.
4

±
2.
4

1.
70

±
0.
03

−
6.
1

±
0.
6

1.
58
73

10
00

1.
63
43

±
0.
00
06

88
9.
9

±
5.
0

2.
96

±
0.
04

−
11
.0

±
0.
6

1.
94
45

20
00

2.
04
54

±
0.
00
06

15
95

±
10

5.
19

±
0.
03

−
20
.3

±
0.
8

ho
llo
w

1.
00
52

20
1.
00
48

±
0.
00
03

20
.0
1

±
0.
08

−
0.
04

±
0.
03

0.
1

±
0.
4

1.
01
16

50
1.
01
12

±
0.
00
03

50
.0
5

±
0.
18

−
0.
04

±
0.
03

0.
1

±
0.
4

1.
02
12

10
0

1.
02
06

±
0.
00
03

10
0.
18

±
0.
36

−
0.
06

±
0.
03

0.
2

±
0.
4

1.
08
56

50
0

1.
08
45

±
0.
00
03

50
1.
5

±
1.
9

−
0.
10

±
0.
03

0.
3

±
0.
4

1.
15
75

10
00

1.
15
71

±
0.
00
04

10
01
.0

±
4.
1

−
0.
03

±
0.
03

0.
1

±
0.
4

1.
29
69

20
00

1.
30
00

±
0.
00
05

19
82

±
9

0.
24

±
0.
04

−
0.
9

±
0.
5

1.
59
55

40
00

1.
61
15

±
0.
00
06

38
51

±
20

1.
00

±
0.
04

−
3.
7

±
0.
5

1.
95
77

60
00

1.
99
66

±
0.
00
06

55
41

±
32

1.
99

±
0.
03

−
7.
7

±
0.
6

Ta
bl
e
5.
2:
M
ul
tip

lic
ity

an
al
ys
is
re
su
lts

(m
ul
tip

lic
at
io
n
an
d
m
as
s)

of
M
C
N
PX

-P
ol
iM

is
im
ul
at
io
ns

(s
ub

sc
rip

t
m
u
lt
),
th
e
tr
ue

sim
ul
at
ed

va
lu
es

(s
ub

sc
rip

t
tr
u
e)

an
d
th
e
de
vi
at
io
ns

of
th
e
sim

ul
at
ed

fro
m

th
e
tr
ue

va
lu
es

fo
r
di
ffe
re
nt

so
lid

an
d
ho
llo
w
sp
he
re
s

49



Figure 5.2: Neutron flux density of the 1000 g solid sphere. The cylinder marks rout.

Figure 5.3: Neutron flux density of the 6000 g hollow sphere. The cylinders mark
rin and rout.
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Figure 5.4: P (r) (blue) and A(r) (red) for the 1000 g solid sphere (left) and the
6000 g hollow sphere (right), lines are for guiding the eyes only

Fig. 5.2 and 5.3 show the total neutron flux density Φ(�r) of a slice through both sam-
ples, obtained from MCNPX-PoliMi simulations. The observed rotational symmetry
of the flux density is expected due to the sample geometries. It allows to consider
the flux density as a function of radius Φ(�r) = Φ(r) and correspondingly P (r) and
A(r). For the solid sphere the maximum flux density is Φmax = 12600 cm−2s−1, for
the hollow sphere Φmax = 15700 cm−2s−1. This difference can be explained by the
hollow sphere’s higher multiplication.

From Φ(r), P (r) and A(r) have been calculated at different positions in the volume
by MCNPX-PoliMi, see Fig. 5.4. Each data point represents a hollow sphere volume
element (imagine onion skins). P (r) and A(r) are almost proportional to Φ(r)
because the neutron spectra are similar throughout the volume.

While spontaneous fission was previously simulated over the entire plutonium vol-
ume, more can be learned from the multiplication process of spontaneous fission
neutrons only emitted at specific locations within the sample. For this purpose,
partial volumes of the overall spheres have been defined: The solid sphere has been
artificially divided into five spherical shells that contained 200 g of plutonium each
(see Fig. 5.5); the hollow sphere has been divided into six spherical shells containing
1000 g. One MCNPX-PoliMi simulation has been run per spherical shell. Sponta-
neous fission has been programmed to only occur within the one spherical shell that
has been considered, but neutron transport and all other reactions have been simu-
lated throughout the entire sample volumes (1000 g and 6000 g, respectively). Fig.
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Figure 5.5: 1000 g solid sphere divided into 5 hollow spheres of equal mass, located
between the depicted surfaces

5.6 shows N(r) for all simulations. It can be seen that the maximum contribution to
the neutron production rate in all cases occurs in vicinity of the spontaneous fission
volume, although significant amounts of neutrons are produced everywhere in the
sample volume. This can be explained by the mean free path of the neutrons (2.9 cm
for 1MeV neutrons in Pu-239, 2.8 cm in Pu-240 [10]). It is also in agreement with
the neutron generation probability distributions (Fig. 5.7), i.e. the probabilities
that a neutron within the entire neutron population of the sample belongs to a spe-
cific generation. These are based on MCNPX-PoliMi criticality calculations (1000 g
solid sphere: keff = 0.4862, 6000 g hollow sphere: keff = 0.5962). In both cases
over 40% of the neutron population are spontaneous fission neutrons which indicates
that many neutrons leave the sample without inducing fission.

Fig. 5.6 also shows that Nprod and accordingly M of the individual shells differ (see
equations 5.8 and 5.9, remembering that the mass of the shells per geometry are
equal, so νsf1F + Nα are equal as well). To better understand the dependence of
M on the radius, spontaneous fission has been simulated from sphere surfaces of
different radii that are located within the samples. Fig. 5.8 displays the resulting
graphM(r), where each data point corresponds to one fission surface.3 The average

3Although Fig. 5.4 and Fig. 5.8 show a similar behavior, they are not identical: In Figure 5.4,
spontaneous fission occurs over the entire sample volume and the neutron production rate is
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Figure 5.6: N(r) of the 1000 g solid sphere (left) and 6000 g hollow sphere (right).
For the individual curves, spontaneous fission is simulated only between
the indicated radii, lines are for guiding the eyes only.

Figure 5.7: Neutron generation probabilities of the 1000 solid sphere (red) and
the 6000 g hollow sphere (blue). Neutron generation 1 refers to neutrons
from spontaneous fission, generation 2 are neutrons from the first induced
fission, etc.
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Figure 5.8: Multiplication as a function of spontaneous fission source radius (blue)
and the average multiplication from spontaneous fission over the full
fissile material volume (red). Left is the 1000 g solid sphere case, right
is the 6000 g hollow sphere case.

multiplication of a sphere < M >sphere can be calculated by appropriate weighing:

< M >= 1
V

ˆ

M(�r)dV ⇒ < M >sphere=
1
V

rout
ˆ

rin

4π · r2 ·M(r)dr (5.10)

where rin = 0 for a solid sphere. To explain M(r), one may disregard the multipli-
cation process / induced fission for a moment and discuss Φ(−→r ) for a point neutron
source, e.g. in the 6000 g hollow sphere. Fig. 5.9 describes the neutron flux density
of a slice through the sphere for two point neutron sources, disregarding nuclear
reactions in the volume. The black lines show where the neutron flux density is half
of that of the preceding line. The source neutron flux density decreases with the
squared distance from the point source.4 With sufficient scrutiny, one can estimate
that

´

Φ(�r)dV within the entire hollow sphere is larger for the point source at 3.8 cm
than at 3.51 cm. This indicates why the neutron multiplication is higher at 3.8 cm,
in agreement with Fig. 5.8. This consideration is only a first approximation as no
nuclear reactions are included in the flux density distribution, but it is useful for

displayed as a function of radius. In Figure 5.8, the radius corresponds to a surface spontaneous
fission source, while the multiplication that is shown at each radius is the result of neutron
production in the full fissile material volume.

4Φ = n
4πr2·t ⇒ Φ2

Φ1
= r2

1
r2

2
, where n/t is the neutron rate and Φ1 and Φ2 are the flux densities at

radii r1 and r2.
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Figure 5.9: Flux density isolines (black) for a point neutron source in a 6000 g hollow
sphere slice (red margins) at r = 3.51 cm (left) and r = 3.8 cm (right).

a qualitative description as over 60% of the neutrons leaving the sample are from
spontaneous fission or the first induced fission (see Fig. 5.7).5 The same general
argumentation explains the neutron production characteristics of the 1000 g solid
sphere.

5.2.2 Existing correction model

As assumed, the previous sub-section has demonstrated the dependence of M on �r
in the two cases (Fig. 5.8). The hypothesis that the spatially variant multiplication
is the reason for the large deviations in Table 5.2 remains to be tested.

There had been limited success in applying correction factors that are functions
of the measured multiplication to the multiplicity analysis: Krick et al. [49] ran
MCNPX simulations with plutonium cylinders of different height/diameter ratios
and masses. For each simulation, the multiplicity analysis was performed with
results deviating from the true values. Separate S, D and T correction factors
were empirically determined for each simulation to obtain the correct results. It
was found that the correction factors can be given as a function of multiplication,

5Absorption of spontaneous fission neutrons (e.g. by induced fission reactions) further decreases
the spontaneous fission neutron flux density over distance, but the neutrons emitted from
induced fission increase the flux density and change its distribution.
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independent of fissile mass. As these correction factors were determined empirically
without a full theoretical understanding, it is difficult to generalize this approach,
despite its specific success.

Croft et al. [50] proposed another model: In equations 2.25, 2.26 and 2.27, the
multiplication appears up to the fifth order (n = 5). They assumed without proof
that the physically correct values for the multiplication would be [50]

Mn =< Mn >= 1
V

ˆ

Mn(�r)dV

=⇒ < Mn >sphere=
1
V

rout
ˆ

rin

4π · r2 ·Mn(r)dr
(5.11)

As the standard “point model” multiplicity analysis falsely assumes Mn =< M >n

(�=< Mn >), they propose that the equations of the multiplicity analysis can be
corrected as follows [50]:

gn =
< Mn >

< M >n
n = 2...5

S =F · � ·M · νsf1(1 + α)

D =F · �2 · fd ·M2

2

�
νsf2g2 + (g3 ·M − g2)

νsf1 · νi2

νi1 − 1 (1 + α)
�

T =F · �3 · ft ·M3

6 [νsf3g3 + (g4 ·M − g3)(1 + α)
νsf1νi3

νi1 − 1+

3(g4 ·M − g3)
νsf2νi2

νi1 − 1 + 3(g5 ·M2 − 2g4 ·M + g3)(1 + α)
νsf1 · ν2i2
(νi1 − 1)2 ]

(5.12)

In the following, the proof of these equations is provided: Sub-section 2.3.1 intro-
duced the “superfission” concept which assumes a primary neutron source (sponta-
neous fission and (α, n)) and subsequent multiplication of these primary neutrons by
induced fission, described by M . The result was the normalized multiplicity distri-
bution P (ν) and its factorial moments ν1, ν2 and ν3 describing the neutrons emitted
by a “superfission”. According to the “point model”, P (ν) does not depend on the
location of the primary neutron source, as the multiplication is independent of it.
If this is not valid, ν1, ν2 and ν3 depend on the position �r of the primary neutron
source. The correct factorial moments of the overall sample are the volume-weighted
averages:
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< νn >=
1
V

ˆ

νn(�r)dV (5.13)

This integration can be performed with equations 2.8, 2.9 and 2.10. Understanding
that only M depends on �r, the result is

< ν1 >=
< M >

1 + ανsf1
νsf1(1 + α) (5.14)

< ν2 >=
< M2 > νsf2

1 + ανsf1
+ < M3 > − < M2 >

(1 + ανsf1)(νi1 − 1)νsf1(1 + α)νi2 (5.15)

< ν3 >=
< M3 > νsf3

1 + ανsf1
+
�
< M4 > − < M3 >

(1 + ανsf1)(νi1 − 1)

�
[3νsf2νi2 + νsf1(1 + α)νi3]

+ 3< M
5 > −2 < M 4 > + < M3 >

(1 + ανsf1)(νi1 − 1)2 νsf1(1 + α)ν2i2 (5.16)

with < Mn >= 1
V

ˆ

Mn(�r)dV

Then, < ν1 > must be inserted for ν1 in equation 2.20, < ν2 > for ν2 in equation
2.21 and < ν3 > for ν3 in equation 2.22. The result is identical to equation 5.12,
where Mn =< M >n.

In the sub-sequent sub-sections, remaining issues related to this model will be dis-
cussed:

1. The corrected multiplicity equations must be derived to calculate M , α and
mPu (sub-section 5.2.3).

2. It must be tested whether the gn remove the bias. This would show whether
the bias is caused by the spatially variant multiplication, see sub-section 5.2.4.

3. In order to increase the reliability for warhead and warhead component au-
thentication, further simulations must be performed to find out how the gn
can be determined for solid and hollow spheres. The aim is to understand the
gn based on the physics of the samples, see sub-section 5.2.5.
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5.2.3 Corrected multiplicity analysis

The derivation of the equations of the corrected multiplicity analysis based on equa-
tions 5.12 is provided in Appendix D. As a result, M can be calculated from solving
the following equation:

0 = f(M) =
�
D − � · fd ·M · νi2 · S

2(νi1 − 1) (g3 ·M − g2)
�−1

·
�
a ·M6 + b ·M 5 + c ·M 4 + d ·M3 + e ·M2 + f ·M + g

�

a = − 3g3(g2g5 − g3g4) · �3 · f 2dft · νsf2ν3i2 · S2

b = − g3 · �3 · f 2dft · νi2 · S2{g2g4 · νsf2νi3(νi1 − 1)+
3g2g4 · νsf2ν2i2 + 3g23 · νsf2ν2i2 − 6g2g4 · νsf2ν2i2 − g23 · νsf3νi2(νi1 − 1)}+
3g2 · �3 · f 2dft · νsf2ν3i2 · S2(g2g5 − g3g4)

c =�2 · fdft · νi2 · S{6νsf2νi2(νi1 − 1) ·D(g2g5 − g3g4)−
g3[6g4 · νsf2νi2(νi1 − 1) ·D + g2g3 · � · fd · (νi1 − 1) · S(νsf3νi2 − νsf2νi3)]}+
g2 · �3 · f 2dft · νi2 · S2{g2g4 · νsf2νi3(νi1 − 1) + 3g2g4 · νsf2ν2i2+
3g23 · νsf2ν2i2 − 6g2g4 · νsf2ν2i2 − g23 · νsf3νi2(νi1 − 1)}

d =�2 · fdft · (νi1 − 1) · S{2D·
�
g2g4 · νsf2νi3(νi1 − 1) + 3νsf2ν2i2 · (g23 − g2g4) − g23 · νsf3νi2(νi1 − 1)

�
−

2g23 · νi2 ·D (νsf3(νi1 − 1) − 3νsf2νi2) + g2 · νi2·
[6g4 · νsf2νi2 ·D − g2g3 · � · fd · νsf2νi3 · S + g2g3 · � · fd · νsf3νi2 · S]}

e =6g2g3 · � · f 2d · νsf2νi2(νi1 − 1)2 · S · T + 2 · � · ft · (νi1 − 1) ·D · {(νi1 − 1)·
[6g4 · νsf2νi2 ·D − g2g3 · � · fd · S (νsf2νi3 − νsf3νi2)] +
g2g3 · � · fd · νi2 · S · (νsf3(νi1 − 1) − 3νsf2νi2)}

f = − 6g22 · � · f 2d · νsf2νi2(νi1 − 1)2 · S · T + 4g3 · � · ft · νsf3(νi1 − 1)3 ·D2−
12g3 · � · ft · νsf2νi2(νi1 − 1)2 ·D2

g = − 12g2 · fd · νsf2(νi1 − 1)3 ·D · T
(5.17)

0 = f(M) can be numerically solved for M by Newton’s method

Mn+1 =Mn − f(Mn)
f �(Mn)

(5.18)

where the above equation is applied iteratively after an initial guess of M1 until Mn
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1000 g solid sphere 6000 g hollow sphere
< M1 > 1.5878 1.9566
g2 1.0068 1.0048
g3 1.0215 1.0142
g4 1.0441 1.0280
g5 1.0751 1.0461

Table 5.3: M and gn determined from equations 5.11 and 5.12, based on MCNPX-
PoliMi simulations

is found with acceptable accuracy. |Mn+1−Mn| < 10−9 has been used for this work.
M can then be inserted into the following equations to obtain the other factors (see
Appendix D):

F = 2
�2 · fd ·M2 · νsf2 · g2

�
D − � · fd ·M · νi2 · S

2(νi1 − 1) (g3 ·M − g2)
�

α = S

F · � ·M · νsf1
− 1

(5.19)

These calculations (equations 5.17, 5.18 and 5.19) have been implemented in a MAT-
LAB script which has been used to obtain the following results. The equations have
been tested against the Ispra measurement data (see sub-section 3.2), setting all
gn = 1 as all samples have low multiplication and small masses. M1 = 1.5 has been
chosen and identical results compared to the point model multiplicity analysis have
been found.

5.2.4 Testing the analysis

The gn of the 1000 g solid and the 6000 g hollow spheres have been calculated in
order to test whether they remove the bias. Croft et al. [50] propose a polynomial
fit to obtain the function M(r) for the simulated data points (i.e. fission surfaces)
in order to integrate it afterwards according to equation 5.11. The polynomial fit
is, however, very volatile.6 A linear interpolation has yielded satisfactory results.
This fit method has been implemented in the MATLAB script to calculate the gn.
Table 5.3 shows the results. The fitting process introduces an uncertainty which
depends on how close the data points are. Due to a large density of data points, the

6For an acceptable fit, the fit function must be a third order polynomial; in this case, however,
slight changes to the data points can have dramatic effects on the integral of the polynomial
fit.
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Figure 5.10: f(M) (blue) for the 1000 g solid sphere (left) and 6000 g hollow sphere
(right). The intersection of f(M) and the zero line (red) is the solution
M .

Mcorr ΔM mPu,corr ΔmPu

1000 g solid sphere 1.5902 ± 0.0005 (0.18 ± 0.03)% 1023 ± 5 (2.30 ± 0.50)%
6000 g hollow sphere 1.9627 ± 0.0006 (0.26 ± 0.03)% 6074 ± 33 (1.23 ± 0.55)%

Table 5.4: Results and their statistical uncertainties of the corrected multiplicity
analysis (subscript corr) and the deviations to Mtrue and mPu,true

uncertainties of the data in Table 5.3 are estimated to be less than 3 %. The two
< M1 > values calculated from the integrated curves are very close to Mtrue of Fig.
5.2 which demonstrates the validity of the procedure.

Fig. 5.10 displays f(M) (equation 5.17) calculated from the gn. The corrected
multiplicity analysis results are given in Table 5.4. All values lie slightly outside
their statistical uncertainties, but remain small enough to be reasonably explained
by the interpolation and the multiplicity uncertainties (sub-section 5.1.2). Mass
deviations of -11.0 % and -7.7 % are reduced to 2.3 % and 1.2 %. The corrected
multiplicity analysis has furthermore been conducted for all samples of Table 5.2
and additionally three hollow spheres series of the plutonium specified above with
rin = 1.0 cm, 2.0 cm, 5.0 cm and different masses. The results of the point model
analysis are qualitatively similar to those of Table 5.2. The corrected point model
gives accurate results in all cases. The average values of the deviations between
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multiplicity analysis and true simulated data from all simulations are

ΔM = (0.06 ± 0.38)%
ΔmPu = (0.38 ± 1.30)%

(5.20)

Due to these results, it is concluded that spatially variant multiplication is indeed
the main reason for the bias of the point model multiplicity analysis. The corrected
multiplicity analysis as proposed by Croft et al. [50] is correct and generally works
successfully.

5.2.5 Reducing the bias for warhead authentication

If the sample configuration is fully known, M(r) can be obtained and the gn can
be accurately determined. In this sub-section, it is examined which physical factors
the gn depend on. The goal is the ability to determine the gn from such factors
without having to simulate the precise function M(r). The discussion focuses on
solid and hollow sphere geometries to ensure the direct relevance for warhead and
warhead component authentication. In this case, the exact configuration of the
fissile material will not be fully known. An example is that rin and rout may not
be declared. Therefore, this sub-section also examines to which degree of accuracy
the gn can be determined only from parameters that are known or can be assessed.
This would increase the reliability of neutron multiplicity counting for warhead and
warhead component authentication.

In order to interpret simulation results, some considerations regarding the gn follow
first: g2 and g3 are related to the variance σ2(M) and the third central moment
σ3(M):

σ2(M) = 1
V

ˆ

(M(�r)− < M >)2 dV (5.21)

=< (M− < M >)2 >=< M2 > − < M >2 (5.22)
σ3(M) =< (M− < M >)3 >

=< M3 > −3 < M >< M 2 > +2 < M >3 (5.23)
=< M3 > −3 < M > ·σ2(M)− < M >3 (5.24)
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=⇒ g2 =
< M2 >

< M >2
= σ2(M)+ < M >2

< M >2
= σ2(M)
< M >2

+ 1 (5.25)

g3 =
< M3 >

< M >3
= 1 + 3 σ

2(M)
< M2 >

+ σ3(M)
< M >3

(5.26)

where equations 5.22 and 5.23 are for instance derived in [51, p. 259]. Equations for
g4 and g5 become increasingly complex. Equation 5.25 shows that g2 ≥ 1 because
σ2(M) ≥ 0. From equation 5.26 it can be seen that g3 > g2 as σ3(M) ≥ 0. For larger
variances σ2(M), larger corrections (g2 and g3) are required. In words, the square of
a function is compared to the square of the function’s average value. The difference
between squares of function values above the average to the squared average will be
larger than the difference between the squared average to the squares of function
values below the average, hence positive g2. This explanation can be analogously
applied to g4 and g5 with the fourth and fifth power.

Croft et al. [50] calculated correction factors from simulations of solid plutonium
spheres and cylinders of different masses [50]. They propose a function based on their
simulations which does not seem to be explicitly based on physical considerations
:

gn,Croft = a · eb·mP u (5.27)

For a range of solid spheres and cylinders, the fitting coefficients a and b are listed
[50]. Simulations performed for this dissertation demonstrate, however, that the
correction factors depend on the sample geometry and therefore the proposed fitting
coefficients would need to be evaluated for each geometry individually: Fig. 5.11
shows the g2 calculated from M(r) which has been obtained from MCNPX-PoliMi
simulations of all configurations addressed in the previous sub-section. Within the
individual series (rin = const.), increased masses result in increased g2 as in gn,Croft.
The functions between the individual series, however, differ strongly. Appendix
Fig. E.1, E.2 and E.3 show the according graphs g3(mPu), g4(mPu) and g5(mPu).
The gn differ in magnitude, but their relative behavior for the different geometries
is very similar for all gn. All graphs show that expected uncertainties would be
large when calculating gn as a function of fissile mass without knowledge of rin. The
correction factors are related to σ2(M), σ3(M) etc. Accordingly, they depend on the
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Figure 5.11: g2 as a function of fissile mass for a range of simulations. Dots represent
simulated configurations, the lines are for guiding the eyes only and
connect simulations of the same same rin.

specific function M(r) which is only partially influenced by mPu. gn,Croft are very
helpful if the appropriate information is available. Due to the particular challenge of
warhead and warhead component authentication, where such information is likely
not available, the gn,Croft should perhaps not be directly applied in this specific
context.

A different parameter which σ2(M), σ3(M) etc. physically depend on should be
identified so that the gn could be determined from knowing or assessing this pa-
rameter. The dependence of the gn on the thickness of the hollow spheres has been
investigated (where in this dissertation the “thickness” of solid spheres refers to their
radius): The multiplication increases with the amount of fissile material in the vicin-
ity of the source location because

´

Φ(�r)dV increases (see sub-section 5.2.1). One
can also explain the increased multiplication by a reduced neutron leakage due to
these geometrical considerations. With this logic, the differences of multiplication
at different radial locations in a hollow sphere increases with the thickness: The
differences of the amounts of fissile material in vicinity of the source increases and
so do the neutron leakage differences.7 Correspondingly, σ2(M) and σ3(M) grow.

7To understand this, one may consider two sources at rin + (rout − rin)/2 and rout in Fig. 5.9
and the following simplified view: When increasing the thickness, for the former source the
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Figure 5.12: g2 as a function of the thickness for a range of simulations. Dots rep-
resent simulated configurations, the lines are for guiding the eyes only
and connect simulations of the same same rin.

Fig. 5.12 shows g2 as a function of thickness for the different geometries, based on
simulation results. As above, the relative behavior of all gn is very similar to the
behavior of g2, see Appendix Fig. E.4, E.5 and E.6. Consistent with the logical
explanation, the g2 increase with thickness for all geometries. Fig. 5.13 shows that
also the multiplication increases with thickness for all geometries. σ2(M) increases
with a steeper slope than < M >2. This is evident from equation 5.25, but has
also been confirmed by calculating σ2(M) for all geometries according to equation
5.21.

The most significant observation of Fig. 5.12 is that - with the exception of the
solid spheres - all gn are quantitatively very similar for all geometries (different rin)
of the same thickness. It follows from equations 5.25 and 5.26 that

d = const. =⇒
σ2(M)
< M >2

≈ const.

σ3(M)
< M >3

≈ const.

(5.28)

contribution to
´

Φ(−→r )dV increases both inwards and outwards, neutron leakage becomes
smaller. For the latter source,

´

Φ(−→r )dV increases only inwards, neutron leakage is reduced
to a lesser extent. The difference between the two sources increases accordingly.
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Figure 5.13: M as a function of the thickness for a range of simulations. Dots
represent simulated configurations, the lines are for guiding the eyes
only and connect simulations of the same same rin.

for all hollow spherical geometries, where d is the thickness. M itself, however,
is not constant for constant thickness, but increases with rin, as Fig. 5.13 shows.
Correspondingly, the same is true for σ2(M) and σ3(M). The reason is that the
fissile material volume grows with rin at the same thickness.

´

Φ(�r)dV over the
fissile volume increases accordingly.

As only results for plutonium metals of the same isotopic composition were shown
above, an oxide sample (solid sphere) has been simulated, see Table 5.5. The point
model multiplicity analysis correctly predicts the true values within their statistical
uncertainties. Oxides, in general, have a lower multiplication compared to metal
samples of the same configuration mainly due to the reduced plutonium isotope
density.8 The metal sample corresponding to the simulated oxide requires correction
factors. Examining the influence of isotopic composition, the 6000 g hollow sphere
has been simulated with different isotopic compositions, see Table 5.6. Together
with Table 5.3 it can be seen that correction factors slightly increase with Pu-239
content. However, the influence is small compared to the influence of geometry.

The influence of oxides and isotopic composition on the mPu assessment further
8The density in the simulation has been chosen to be realistic for plutonium oxide [52, p. 1528]
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R239 94%
R240 6%
ρ 10.4 g/cm3

Mtrue 1.1518
mPu,true 231.64 g
Mmult 1.1519 ± 0.0002
αmult 0.7193 ± 0.006
mPu,mult 231.1000 ± 0.8 g

Table 5.5: Characterization and simulated values of oxide sample (solid sphere)

R239 R240 g2 g3 g4 g5
0.70 0.30 1.0040 1.0118 1.0233 1.0383
0.85 0.15 1.0045 1.0133 1.0263 1.0433
0.97 0.03 1.0049 1.0146 1.0288 1.0474

Table 5.6: gn calculated from MCNPX-PoliMi simulations of the 6000 g hollow
sphere configuration and different isotopic compositions.

loses relevance in the context of authenticating plutonium warheads and warhead
components: Items with large α would be rejected because warheads can be expected
not to consist of plutonium oxide. Moreover, an isotopic composition threshold is
usually considered as part of an information barrier; warheads with high Pu-240
content would also be rejected so that no neutron multiplicity measurement would
need to be conducted. Accordingly, neutron multiplicity measurements must be
accurate mainly for weapon-grade metals.

If the thickness was known and whether the fissile pit was solid or hollow, the cor-
rect gn could be determined with a high degree of accuracy, independent of further
information: For example, a reasonable estimate could be obtained by using the gn
values for rin = 2.0 cm hollow sphere. Table 5.7 shows that applying these correc-
tion factors to other hollow sphere configurations of the same thickness introduces
deviations below 1 % in the fissile mass assessments - in contrast to applying the
point model with much larger uncertainties. The assessment was performed using
configurations with different rin and d = const. = 1 cm. This thickness was chosen
because the differences between the correction factors of the different rin seems to
be roughly an average value compared to the differences at other thicknesses, see
Fig. 5.12. The differences do not appear to be significantly larger for large thick-
nesses so that it can be concluded that the high degree of accuracy is obtained for
all reasonable configurations. Accordingly, the plutonium mass could be adequately
determined, keeping in mind remaining uncertainties discussed in section 5.1. The
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rin = 1.0 cm rin = 3.5 cm rin = 5.0 cm
Mtrue 1.3587 1.5955 1.6835

mPu,true [g] 580.6 4000.0 7547.4
Mpoint 1.3697 ± 0.0002 1.6115 ± 0.0006 1.7023 ± 0.0004
ΔM [%] 0.8 ± 0.01 1.0 ± 0.04 1.1 ± 0.02
mPu,point [g] 563 ± 1 3851 ± 20 7230 ± 24
ΔmPu [%] −3.0 ± 0.2 −3.7 ± 0.5 −4.2 ± 0.3
Mfit 1.3593 ± 0.0002 1.5998 ± 0.0006 1.6900 ± 0.0004

ΔM [%] 0.04 ± 0.01 0.3 ± 0.04 0.4 ± 0.02
mPu,fit [g] 581 ± 1 3982 ± 20 7487 ± 24
ΔmPu [%] 0.1 ± 0.2 −0.5 ± 0.5 −0.8 ± 0.3

Table 5.7: Multiplicity analysis results using the point model (subscript point) and
the corrected model with the gn from the rin = 2.0 cm data (subscript
fit), the true simulated values (subscript true) and the deviations of
the simulated from the true values for different hollow spheres with d =
1.0 cm

thickness would need to be determined with appropriate measurements behind an in-
formation barrier so that the measurement result can be used in the analysis without
being known to an inspector. Information on a solid or hollow configuration could
be declared by the host.9 As the determination of gn from the thickness is based on
physical understanding and as it mainly depends on parameters that are known, the
accuracy and reliability would be high in the context of warhead authentication.

However, measuring the thickness is a technical challenge requiring further research
and might be impossible for political reasons. An estimate on the correction factors
can also be obtained from the sample multiplication. It is a direct output of the
multiplicity analysis and therefore available information. Fig. 5.14 shows that slopes
of g2(M) are somewhat steeper for smaller rin because the thickness is larger at the
same multiplication, see Fig. 5.13. In contrast to g2(mPu), however, the slopes
only differ somewhat. In particular when a differentiation between solid and hollow
spheres is possible, estimates for g2 can be obtained. This logic extends to all other
gn, see Appendix Fig. E.7, E.8 and E.9. The uncertainties of the gn determined this
way are larger than if they were determined from the thickness, but smaller than
for gn,Croft.

Depending on the available information on the configuration, different gn estimates
would be chosen. As an example, gn(M) for rin = 2 cm may be a reasonable

9A decision to declare this would need to be consistent with the Non-Proliferation Treaty’s Articles
I and II.
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Figure 5.14: g2 as a function of M for a range of simulations. Dots represent sim-
ulated configurations, the dotted lines are for guiding the eyes only
and connect simulations of the same same rin, the solid red line is an
empirical fit to the rin = 2.0 cm data.

a b c d
g2(M) 0.087 −2.093 0.972 0.018
g3(M) 0.193 −1.434 0.897 0.062
g4(M) 0.396 −1.872 0.848 0.103
g5(M) 0.694 −2.049 0.777 0.161

Table 5.8: Parameters for fit function (equation 5.29)

reference curve when a hollow sphere is assumed and rin remains unknown. Different
fit functions have been tested using MATLAB; the best functions that have been
found (shown in Fig. 5.14, E.7, E.8 and E.9) are

gn(M) =




1 M < 1.1

a · exp(b ·M) + c · exp(d ·M) M > 1.1
(5.29)

with the parameters from Table 5.8. They are purely empirical. The shapes of the
curves are physically understood and the dependence on unavailable information is
limited but existent. Therefore, this procedure appears acceptable and remains a
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rin = 1.0 cm rin = 3.5 cm rin = 5.0 cm
Mtrue 1.7755 1.9577 1.8864

mPu,true [g] 1777.0 6000.0 9208.5
Mpoint 1.8318 ± 0.0004 1.9966 ± 0.0006 1.9156 ± 0.0006
ΔM [%] 3.2 ± 0.02 1.99 ± 0.03 1.5 ± 0.03
mPu,point [g] 1564 ± 6 5541 ± 32 8664 ± 48
ΔmPu [%] −12.0 ± 0.3 −7.7 ± 0.5 −5.9 ± 0.5
Mfit 1.7969 ± 0.0004 1.9422 ± 0.0006 1.8698 ± 0.0006

ΔM [%] 1.2 ± 0.02 −0.8 ± 0.03 −0.9 ± 0.03
mPu,fit [g] 1720 ± 6 6378 ± 34 9754 ± 50
ΔmPu [%] −3.2 ± 0.3 6.3 ± 0.6 5.9 ± 0.5

Table 5.9: Multiplicity analysis results using the point model (subscript point) and
the corrected model with the gn from the reference curves gn(M) (sub-
script fit), the true simulated values (subscript true) and the deviations
of the simulated from the true values for different hollow spheres

better option compared to gn,Croft for solid and hollow spheres. Table 5.9 compares
the results of the multiplicity analysis using the point model and the fit function for
all considered hollow sphere geometries that have the highest multiplication. For
these configurations, the correction factors deviate the most from the fit function as
seen in Fig. 5.14. Therefore, the deviations of the fit function analysis to the true
data are expected to be large. Correspondingly, the data represents a pessimistic
estimate. Still, the results show that the fit function tends to improve the results
of M and mPu compared to the point model analysis. Hence, this approach can
be recommended, although uncertainties may remain large for unfavorable condi-
tions. The more information were available on the configuration, the more could
uncertainties be further reduced due to the reduced variability of possible correction
factors and accordingly a better fit function.

5.3 Bias from Reflected Configurations

A fully assembled warhead contains at the minimum the conventional explosive. It
may also have a neutron reflector such as beryllium and further materials [48]. Due
to safety reasons, warheads and warhead components are usually stored in appropri-
ate containers which inter alia consists of materials such as Celotex or polyurethane
[53]. Conventional explosives, Celotex and polyurethane contain hydrogen and car-
bon besides others. Effects in such materials are neutron moderation by elastic
scattering and to a lesser extent absorption reactions. (n, γ) is the absorption re-
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action with the largest cross-section in hydrogen and carbon [10]. These effects
influence �, fd and ft (see sub-section 5.1).

Additionally, neutrons are reflected back to the sample where they can undergo
additional reactions. Corresponding effects in the fissile material are studied in
this section in order to examine the gn for reflected configurations. To focus on
this, the “idealistic detector” has been used where fd = ft = 1 as the gate length
remains sufficiently long. There is no influence of the energy spectrum on � with
the “idealistic detector”, but absorption in the material between fissile sample and
detector must be taken into account. Therefore, � is determined for every simulation
individually so that no uncertainty is introduced. Simulations were conducted with
the 1000 g solid sphere and 6000 g hollow sphere introduced in section 5.2 with a
3 cm thick layer of polyethylene (ρ = 0.955 g/cm3) directly surrounding the fissile
material. Consisting of hydrogen and carbon, polyethylene is suited to represent
the materials above in regard to the neutron interactions, and the quality of the
simulations is provided as simulations with polyethylene have been tested against
experimental data (chapter 4).

Fig. 5.15 and 5.16 show the spatial neutron flux density distributions of a slice
through the two configurations which have been simulated with MCNPX-PoliMi.
Comparing them to the unreflected configurations (Fig. 5.2 and 5.3), the general
shape of the distributions are rather similar. However, the flux density of the re-
flected configurations is significantly higher: For the reflected solid sphere, the maxi-
mum flux density is Φmax = 15300 cm−2s−1 (compared to Φmax = 12600 cm−2s−1 for
the unreflected case); for the hollow sphere, it is Φmax = 29900 cm−2s−1 (compared
to Φmax = 15700 cm−2s−1 for the unreflected case). The flux density increase comes
both directly from reflected neutrons and from further induced fission, i.e. increased
multiplication. It is much larger for the hollow sphere configuration which indicates
that more neutrons are reflected. The simulations show that 11.4% of all neutrons
leaving the fissile material are reflected back for the solid sphere configurations and
19.5% for the hollow sphere configuration. This is consistent with geometrical con-
siderations: The ratio of inner (= rout) to outer surface of the polyethylene volume
is larger for the hollow sphere. Hence, the probability that neutrons that entered
the polyethylene leave in the direction of the fissile material is larger.

Fig. 5.17 shows the energy distribution of neutrons at various radii of the solid sphere
obtained from simulations. The distributions have been normalized in such a way
that the integrals of the spectra correspond to the rate of neutrons passing through
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Figure 5.15: Neutron flux density of the 1000 g solid sphere surrounded by polyethy-
lene. The cylinder marks rout.

Figure 5.16: Neutron flux density of the 6000 g hollow sphere surrounded by
polyethylene. The cylinder mark rin and rout.
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Figure 5.17: Energy distribution of neutrons passing through spherical surfaces (see
indicated radii) within the 1000 g solid sphere

a 1 cm2 surface. At all radii, the neutron spectra have a neutron fission spectrum
component with some influence from inelastic scattering (compare to Fig. 2.3), but
furthermore a lower energy component which is due to the reflected neutrons. The
dips in the spectra are the result of Pu-239 resonances, see Fig. 2.1. With increasing
radii, the ratio of neutrons with energies below 100 keV to energies above 100 keV
increases. As the fission cross-section of Pu-239 increases with decreasing energy,
the mean free path becomes much shorter and the reflected neutrons are absorbed at
larger radii. In particular thermal neutrons do not penetrate the volume: 0.025 eV
neutrons have a mean free path of 0.02 cm in plutonium metal [10]. At r = 2.0 cm
the flux density of neutrons below 0.1 eV is more than four orders of magnitudes
smaller compared to r = 2.27 cm. From induced fission by reflected moderated
neutrons, additional fast neutrons occur. Accordingly, also the fast neutron flux
density increases with reflection. The simulation shows that more than 90% of all
neutrons have energies above 100 keV at all radii and accordingly long mean free
paths. This explains the similarity between the spatial flux density distribution
shapes of the reflected configurations (Fig. 5.15 and 5.16) and their unreflected
counterparts. The qualitative results are also valid for the hollow sphere. Due to
the larger polyethylene volume for the hollow sphere configuration, simulations show
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Figure 5.18: P (r) (blue) and A(r) (red) for the reflected 1000 g solid sphere (left)
and the reflected 6000 g hollow sphere (right), lines are for guiding the
eyes

that the lower energy contributions are larger compared to the solid sphere.

The neutron production and absorption rates P (r) and A(r) (see equations 5.6
and 5.7) of the reflected solid and hollow spheres as obtained from simulations are
shown in Fig. 5.18. They sharply increase towards rout due to the presence of
thermal neutrons and the according high cross-sections. It is more pronounced for
the hollow sphere as the amount of thermal neutrons is larger. Apart from that,
the curves are qualitatively similar to the unreflected configurations (Fig. 5.4).
Quantitatively, the rates are significantly larger. This is the direct consequence of
the lower neutron energy component and the higher neutron fluxes of the reflected
solid sphere and to an even larger extent of the hollow sphere.

5.3.1 Correction factors

The dependence of the multiplication on the radius M(r) has been investigated to
study the correction coefficients gn, see Fig. 5.19. The curve shapes of the reflected
configurations are somewhat similar to the shapes of the unreflected configurations,
the slopes of the reflected configurations are slightly steeper. The multiplication
of the reflected configurations is generally higher. The increased multiplication is
the result of the larger neutron production rates. The more neutrons leave the
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Figure 5.19: Multiplication as a function of spontaneous fission source radius for the
1000 g solid sphere (left) and the 6000 g hollow sphere. The reflected
configurations (blue) are compared to the unreflected configurations
(red).

reflected 1000 g solid sphere reflected 6000 g hollow sphere
< M1 > 1.8233 3.0873
g2 1.0059 1.0033
g3 1.0187 1.0098
g4 1.0385 1.0193
g5 1.0656 1.0319

Table 5.10: M and gn determined from equations 5.11 and 5.12, based on MCNPX-
PoliMi simulations

fissile material to enter the polyethylene, the more are also reflected back to induce
further fission. Therefore, high multiplication data points of the unreflected M(r)
distribution will increase to a larger extent when adding polyethylene. This explains
the slightly increased steepness.

Table 5.10 shows the correction factors. They can be compared to the unreflected
configurations (Table 5.3). For both the solid and hollow spheres, all correction
factors of the reflected configurations are somewhat smaller than for the unreflected
configurations. It can be explained by equations 5.25 and 5.26: While the reflected
curves are steeper and accordingly σ2(M) and σ3(M) are larger, also < M >2 and
< M >3 are larger as can be seen from Fig. 5.19. The increase of < M >2 and
< M >3 is greater than the increase of σ2(M) and σ3(M).
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reflected 1000 g reflected 6000 g
solid sphere hollow sphere

Mtrue 1.8357 3.1074
mPu,true [g] 1000 6000.0
Mmult 1.8711 ± 0.0002 3.1653 ± 0.0006
ΔM [%] 1.9 1.9
mPu,mult [g] 921 ± 2 5623 ± 28
ΔmPu [%] −7.9 −6.3
Mcorr 1.8683 ± 0.0002 3.1291 ± 0.0005

ΔM [%] 1.8 0.7
mPu,corr [g] 979 ± 2 6166 ± 28
ΔmPu [%] −2.1 2.8
Mcorr,unrefl 1.8181 ± 0.0002 3.1139 ± 0.0005
ΔM [%] −1.0 −0.2

mPu,corr,unrefl [g] 1068 ± 2 6393 ± 29
ΔmPu [%] 6.8 6.6

Table 5.11: Multiplicity analysis results using the point model (subscript mult), the
corrected model with the correct gn (subscript corr) and the gn of the
unreflected configurations (subscript corr, unrefl). The true simulated
values (subscript true) and the deviations of the multiplicity analyses
results from the true values are given.

In order to conduct the multiplicity analysis, the detection efficiencies have been
obtained from the MCNPX-PoliMi output. They are � = 0.979 for the reflected
solid sphere and � = 0.974 for the reflected hollow sphere. The νin have been
calculated from equations 5.2 and 5.3. W (E) has been obtained from MCNPX-
PoliMi simulations of the two configurations. The results for the reflected solid and
hollow spheres are

solid : νi1 = 3.160 νi2 = 8.267 νi3 = 17.555
hollow : νi1 = 3.140 νi2 = 8.127 νi3 = 16.037

(5.30)

With these parameters, the corrected multiplicity analysis has been performed, see
Table 5.11. Compared to the point model multiplicity analysis, the results are much
better. M is somewhat overestimated, mPu is somewhat underestimated for the
solid and overestimated for the hollow sphere. There does not appear to be a physi-
cal reason introducing bias and the deviations are small enough to assume the same
uncertainties as for the unreflected configurations (see sub-section 5.2.4). The table
also shows the results of applying the “false” gn of the unreflected configurations. In
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this case, the fissile masses are overestimated by over 6%. Uncertainties could there-
fore be reduced if information regarding materials between plutonium and detector
were available10, otherwise increased uncertainties must be taken into account.

10A decision to declare this would need to be consistent with the Non-Proliferation Treaty’s Article
VI.
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Chapter 6

Conclusions and Implications

The motivation of this work has been the finding that there was very little research
investigating proposed measurement techniques suggested for warhead authentica-
tion in regard to reducing false assessments. An example is the false assessment of a
plutonium mass threshold which can be considered an attribute for an information
barrier. This can occur when neutron multiplicity measurement results include large
bias. It is essential for an inspecting party to trust the functionality of a system
which is achieved by reducing false positives and false negatives to acceptable levels.
Warheads and warhead components differ from most samples of Safeguards inter-
est, for which sufficient knowledge and experience in regard to neutron multiplicity
counting exists. Hence, this work has focused on plutonium metals in spherical ge-
ometries with large masses. It has identified sources of bias in neutron multiplicity
counting when measuring such items. It has also developed methods to reduce this
bias in order to minimize false positives and false negatives.

Specifically, two types of bias have been identified: First, inadequate knowledge of
detector calibration parameters on the one hand and inadequate knowledge of nu-
clear data required for the multiplicity analysis (νin) on the other hand introduce
bias. It has been physically understood by previous research. This type of bias can
be reduced when certain information regarding the configuration of the samples to
be measured is known. Then, the detector calibration can be performed with repre-
sentative standards. As the available information regarding warheads and warhead
components will be very limited, though, increased uncertainties need to be taken
into account.
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Due to the second type of bias, it has been shown that plutonium masses of relevant
configurations (solid and hollow spheres) are underestimated by as much as 20%
using the established analysis method. The reason is a false assumption used in the
derivation of the neutron multiplicity counting theory: Contrary to this assumption
that the multiplicationM is a constant parameter, it depends on the position �r of the
spontaneous fission source. By introducing correction factors which are calculated
from the function M(�r), the erroneous assumption can be corrected. When the
sample configuration is known, the correction factors can be determined accurately
by simulating the sample configuration and obtainingM(�r) with Monte-Carlo codes
such as MCNPX-PoliMi. Simulations have showed that the use of these correction
factors fully removes the bias.

If the configuration is not fully known and M(�r) cannot be determined, the cor-
rection factors must be approximated based on the available information. When
assuming a hollow plutonium sphere, it has been physically argued and tested in
the dissertation that the correction factors can be approximated by a function of
the hollow sphere thickness. They only show a very small dependence on the inner
(or outer) radius and a small dependence on the plutonium isotopic composition.
Therefore, it has been concluded that the correction factors, and accordingly the plu-
tonium mass, can be determined with good accuracy when the thickness is known.
It is estimated that not knowing the radius introduces an uncertainty of less than
1% which is negligible.

If the thickness remains unknown, an estimate of the correction factors can be
obtained from the multiplication M which is known from the multiplicity analysis.
When describing the correction factors as a function of M , the slopes of the curves
for different radii differ, though their variation remains limited. Therefore, a less
accurate estimate of the correction factors based on M is possible. In this case, a
reference curve must be chosen. One can expect to reduce bias by applying this
procedure compared to the “point model” even when no information on the radii
exists. If upper and/or lower bounds of possible radii can be given, the accuracy of
the correction factors is further enhanced as a better reference curve can be chosen.

Bias can also be removed to a large extent if the correction factors can be exactly
determined for reflected configurations. It has been found that the correction factors
are somewhat smaller for the considered configurations when reflection is presented
compared to the bare warhead components.
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Overall, bias will remain for warhead authentication as the configuration of the war-
heads and warhead components will not be fully known. Accordingly, there can be
mis-classifications. Their rate, however, can be decreased as bias can be reduced by
using the proposed correction factors. Moreover, by having critically evaluated ex-
pected bias, the research also provides means for discussing the reliability of neutron
multiplicity measurements to assess a plutonium mass threshold attribute. Whether
the reliability obtained with the corrected approach suffices depends on various fac-
tors:

First, this work shows that the accuracy can be enhanced by obtaining certain infor-
mation on the fissile material configuration and/or material between the plutonium
and detector. A precise analysis of the reliability depends on the amount of avail-
able information. Accordingly, the inspecting party should negotiate a maximum of
information compatible with the Non-Proliferation Treaty Articles I and II.

Second, the functionality of the warhead authentication depends on the determi-
nation of all attributes, the fissile mass being one of them. Neutron multiplicity
counting is an important part of the warhead authentication system, but not the
only one. Most measurement techniques produce false positives and negatives and it
is the wise combination of different techniques that increase confidence. Accordingly,
some limited amount of neutron multiplicity counting bias may be acceptable on the
one hand. On the other hand, as the confidence gained from an authentication con-
cept should be maximized in any case, one must strive to enhance the reliability of
all elements. As a small amount of failures of the entire authentication system may
perhaps not be excluded, further verification opportunities must be used to obtain
high overall confidence. Their discussion puts the results of this dissertation into
the overall context of disarmament verification:

Warhead authentication must be understood in the context of the other two verifi-
cation requirements, unique identification and Continuity of Knowledge. To provide
an illustration, one imagine that an object looking like a warhead situated on a de-
livery vehicle was uniquely identified and that there is confidence in the Continuity
of Knowledge of the transfer of this object to a dismantlement facility. Knowing that
this object presented in the dismantlement facility was previously deployed provides
an initial level of confidence that this object is a nuclear warhead, already before it
has been authenticated. If all obtained information produce a coherent picture with-
out contradictions or anomalies, it can be concluded that a state is compliant, even
with limited uncertainties in the individual verification measures. Problems arise,
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however, when anomalies are observed or results are inconclusive. For such cases,
platforms for discussing and resolving them are required; the inspected state may
be able to reasonably clarify potential issues. Drawing a conclusion on the obtained
level of confidence requires expert judgment based on all available evidence.
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[27] K. Böhnel, “The effect of multiplication on the quantitative determination of
spontaneously fissioning isotopes by neutron correlation analysis,” Nuclear Sci-
ence and Engineering 90, 75–82 (1985).

[28] M.M. Pickrell, A.D. Lavietes, V. Gavron, D. Henzlova, H.O. Menlove, J. Joyce,
and R.T. Kouzes, “The IAEA workshop on requirements and potential tech-
nologies for replacement of He-3 detectors in IAEA safeguards applications,”
Journal of Nuclear Materials Management 41 (2), 14–29 (2013).
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Appendix A

Elements of the Mathematical Formalism of Neutron
Multiplicity Counting

A.1 The Multiplicity Distribution of Emitted Neutrons

The following derivation of the multiplicity distribution of emitted neutrons in sec-
tion A.1 fully follows Böhnel [27] using probability generating functions (PGF) which
are defined as

f(u) =
∞�

n=0
p(n)un (A.1)

where p(n) is the probability of obtaining the variable n. The following properties
of the PGF will be used in the course of the derivation:

1) The derivatives of f(u) at u = 1 yield the factorial moments, which are defined
as

df(u)
du

|u=1=
∞�

n=0
np(n) = n1

d2f(u)
du2

|u=1=
∞�

n=0
n(n− 1)p(n) = n2

dif(u)
dui

|u=1=
∞�

n=0
n(n− 1)...(n− i+ 1)p(n) = ni

(A.2)

2) When f1(u) and f2(u) are PGFs of two independent variables n1 and n2, the
PGF of their sum is

f(u) = f1(u) · f2(u) (A.3)
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3) Let gk(u) be the PGF with the conditional probabilities p(n | k) that the variable
will become n under condition k. With the probability of condition k being Pk, the
PGF for quantity n without conditions is

f(u) =
�

all k

p(n | k)Pk = p(n) (A.4)

With fs(u) being the PGF for the number of neutrons from a source event (sponta-
neous fission or (α, n) reaction) and fi(u) the PGF for the number of neutrons from
induced fission, one obtains

fs(u) =
∞�

k=0
Ps(k)uk (A.5)

fi(u) =
∞�

k=0
Pi(k)uk (A.6)

Let h1(u) denote the PGF for the number of neutrons from the first and follow-
ing generations that leave the system when one initial neutron is present. Then,
assuming n initial neutrons, the PGF can be expressed using property 2):

hn(u) = [h1(u)]n (A.7)

A neutron in a system can induce fission producing k neutrons with the probability
p · P (k) or leave the system with probability 1− p. Using property 3), the PGF for
one initial source neutron can be expressed in terms of p:

h1(u) = (1 − p)u+
∞�

k=0
p · Pi(k) · hk(u) (A.8)

By applying equation A.7 and comparing it to equation A.6 one obtains an implicit
equation that contains only basic constants in addition to the PGF h1(u) for the
prediction of the consequences of one initial source neutron:

h1(u) = (1 − p)u+ p ·
∞�

k=0
Pi(k) (h1(u))k = (1 − p)u+ p · fi[h1(u)] (A.9)

where fi[h1(u)] is the PGF of the PGF h1(u). After having derived the PGF for one
initial neutron, the PGF for a general source event is now introduced as
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H(u) =
∞�

k=0
P (k)uk (A.10)

where P (k) without subscript describes the probability that k neutrons leave the
sample after multiplication as a consequence of one source event. With equations
2.5 and A.5 as well as property 3) it becomes

H(u) = fs[h1(u)] =
Nα

Rs

· h1(u) +
F

Rs

· fsf [h1(u)] (A.11)

where fsf [h1(u)] is the PGF for the number of neutrons after a spontaneous fission
event including multiplication. Equations A.9 and A.11 are the basic equations
that will yield the factorial moments of the “superfission” multiplicity distribution.
According to property 1), these are the derivatives of H(u). All derivatives are
calculated in detail by Böhnel [27], the final results using equation 2.6 are

ν1 = dH

du
|u=1=Mνs1 = M

1 + ανsf1
νsf1(1 + α) (A.12)

ν2 = d2H

du2
|u=1=M2

�
νs2 +

�
M − 1
νi1 − 1

�
νs2νi2

�

= M2

1 + ανsf1

�
νsf2 +

�
M − 1
νi1 − 1

�
νsf1(1 + α)νi2

�
(A.13)

ν3 = d3H

du3
|u=1=M3

�
νs3 +

�
M − 1
νi1 − 1

�
[3νs2νi2 + νs1νi3] + 3

�
M − 1
νi1 − 1

�2
νs1ν2i2

�

= M3

1 + ανsf1
{νsf3 +

�
M − 1
νi1 − 1

�
[3νsf2νi2 + νsf1(1 + α)νi3]

+ 3
�
M − 1
νi1 − 1

�2
νsf1(1 + α)ν2i2} (A.14)

where νsn are the factorial moments of the general source multiplicity distribution,
νsfn are the factorial moments of the spontaneous fission multiplicity distributions,
νin are the factorial moments of the induced fission multiplicity distribution and νn

are the factorial moments of the “superfission” multiplicity distribution.

A.2 The Multiplicity Distribution of Detected Neutrons

Above, the first three factorial moments of the multiplicity distribution of emit-
ted neutrons have been derived. Here it is described how the detection efficiency
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transforms this distribution to the distribution of neutrons from one “superfission”
measured by the detector D(n) [24]:

D(n) =
max�

ν=n
P (ν)

�
ν

n

�
�n(1 − �)ν−n (A.15)

where P (ν) is the distribution of emitted neutrons from a “superfission”. All emitted
events with ν ≥ n contribute to the probability of detecting n neutrons, where
the probability of detecting n out of ν emitted neutrons depends on the detection
efficiency �.

The mean of this distribution can be derived by using the expectation value of the
binomial distribution �n

k=0 k
�
n
k

�
�k(1 − �)n−k = n� and becomes [21]

max�

n=0
nD(n) = �ν1 (A.16)

Similarly, it can be shown that [27]

max�

n=0
n(n− 1)D(n) = ��ν2 (A.17)

max�

n=0
n(n− 1)(n− 2)D(n) = ��ν3 (A.18)

These values are the factorial moments of detected neutrons from one “superfis-
sion” event. Even though these are principally detected, further aspects must be
considered to understand the counting mechanism, see the next sub-section.

A.3 The Multiplicity Distribution of Detected and Counted
Neutrons

Unless otherwise stated below, section A.3 follows the derivation in [21]. Besides the
detection efficiency, the multiplicity distribution obtained from the gate measure-
ments (i.e. detected and counted neutrons) depends on how these gates function.
Their principal mechanism is explained in section 2.2. The multiplicity distribution
of detected and counted neutrons first depends on whether there is a trigger to open
the gate and second on how many of the neutrons are then detected within the finite
gate length.
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The probability of detecting one of the emitted neutrons from one “superfission”
event which would trigger a gate between t and t+dt is nf(t)dt. f(t) is the neutron
signal distribution. The probability of then detecting one of the remaining (n − 1)
neutrons within the time interval of the open gate is given by

pt =
t+PD+G
ˆ

t+PD

f(s)ds (A.19)

The probability of obtaining a trigger and then counting i of the (n − 1) neutrons
of the same event is

pt,i = n
∞̂

0

f(t)
�
n− 1
i

�
pit(1 − pt)n−1−idt (A.20)

which is the probability of obtaining a trigger and the appropriate binomial distri-
bution.

With this, the multiplicity distribution r(i), which refers to the detected and counted
neutrons from one “superfission”, can be defined. It is obtained by summing over all
possible numbers of detected neutrons n (the maximum i is (n− 1), which is equal
to n ranging from (i + 1) to a maximum N). Therefore, within the sum, D(n) is
multiplied by the probability of obtaining a trigger and the probability of counting
i of the (n− 1) neutrons (equation A.20):

r(i) =
N�

n=i+1

D(n) · n
�ν1

∞̂

0

f(t)
�
n− 1
i

�
pit(1 − pt)n−1−idt (A.21)

The denominator �ν1 is the normalization factor which is obtained by applying
equation A.16, so that the zeroth moment r0 =1. The normalization is necessary
as it will be required at a later step of the derivation.

To calculate the first factorial moment of this distribution, the expectation value of
the binomial distribution is used (equation A.16), which can be rearranged as

n−1�

i=0
i

�
n− 1
i

�
pit(1 − pt)n−1−i = (n− 1)pt (A.22)

In addition to applying equation A.17 and some algebraic operations, one obtains
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r1 =
N−1�

i=1
i · r(i) = �2ν2

�ν1

∞̂

0

f(t) · ptdt (A.23)

Similarly, using equation A.18 for the second factorial moment one obtains

r2 =
N−1�

i=1
i(i− 1) · r(i) = �3ν3

�ν1

∞̂

0

f(t) · p2tdt (A.24)

In order to solve the integrals of these two equations, an assumption must be made
for the neutron signal distribution f(t). [21] and [25] assume that it has a single
exponential die-away with the time constant τ after a rise during the predelay. One
finds that

r1 = �fd · ν2

2ν1
(A.25)

r2 = �2ft · ν3

3ν1
(A.26)

with fd = e−PD/τ (1 − e−G/τ ) (A.27)
ft = f 2d (A.28)

A.4 Solving S, D and T

The equations for S, D and T (2.25, 2.26 and 2.27) can be solved for the unknown
parameters [21]. For M , the following cubic equation with its parameters a, b and
c needs to be solved:

a+ bM + cM 2 +M3 = 0 (A.29)

a = −6Tνsf2(νi1 − 1)
�2ftS(νsf2νi3 − νsf3νi2)

(A.30)

b = 2D [νsf3(νi1 − 1) − 3νsf2νi2]
�fdS(νsf2νi3 − νsf3νi2)

(A.31)

c = 6Dνsf2νi2

�fdS(νsf2νi3 − νsf3νi2)
− 1 (A.32)

After M has been determined, F and α can be obtained:
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F =
2D
�fd

− M(M−1)νi2S
νi1−1

�M2νsf2
(A.33)

α = S

F�νsf1M
− 1 (A.34)
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Appendix B

Measurements and Simulations
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Pu mass [g] diameter [mm] length [mm] isotopic comp.
[wt% Putot]

PM1 12.5 7.5 15.5 238Pu : 0.004
239Pu : 95.420
240Pu : 4.529
241Pu : 0.032
242Pu : 0.015
241Am : 0.245

PM2 18.8 10.0 13.2 238Pu : 0.004
239Pu : 95.493
240Pu : 4.455
241Pu : 0.033
242Pu : 0.015
241Am : 0.235

PM3 18.9 10.45 10.45 238Pu : 0.025
239Pu : 91.358
240Pu : 8.468
241Pu : 0.102
242Pu : 0.047
241Am : 0.895

Table B.1: Characteristics of measured metal samples (personal communication Dr.
Paolo Peerani)
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Pu mass [g] diameter [mm] length [mm] isotopic comp.
[wt% Putot]

PERLA PuO2 10 1.987 13 4 238Pu : 0.058
239Pu : 86.082
240Pu : 13.270
241Pu : 0.321
242Pu : 0.270
241Am : 1.483

PERLA PuO2 20 4.983 13 8 same as PuO2 10
PERLA PuO2 21 9.967 13 15 same as PuO2 10
PERLA PuO2 22 19.919 13 30 same as PuO2 10
PERLA PuO2 23 20.566 13 34 238Pu : 0.084

239Pu : 70.906
240Pu : 26.856
241Pu : 0.691
242Pu : 1.463
241Am : 4.878

CBNM 61 5.547 14.75 3.75 238Pu : 1.028
239Pu : 65.837
240Pu : 26.698
241Pu : 2.020
242Pu : 4.418
241Am : 6.357

CBNM 70 5.635 14.75 3.75 238Pu : 0.720
239Pu : 76.442
240Pu : 19.036
241Pu : 1.634
242Pu : 2.167
241Am : 5.137

CBNM 84 5.851 14.75 3.75 238Pu : 0.058
239Pu : 84.995
240Pu : 14.289
241Pu : 0.297
242Pu : 0.361
241Am : 0.931

CBNM 93 5.829 14.75 3.75 238Pu : 0.010
239Pu : 93.575
240Pu : 6.312
241Pu : 0.064
242Pu : 0.040
241Am : 0.257

Table B.2: Characteristics of measured oxide samples (personal communication Dr.
Paolo Peerani)
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sample measured σstat simulated σstat deviation
[1/s] [%] [1/s] [%] [%]

Cf-252
S 2884.0 0.1 2835.4 0.1 -1.7
D 1547.0 0.2 1606.5 0.2 3.8
T 470.0 0.5 519.2 0.5 10.5

PM1
S 360.2 0.5 342.2 0.1 -5.0
D 137.9 0.5 136.5 0.2 -1.0
T 42.2 1.1 41.5 0.5 -1.8

PM2
S 542.2 0.2 514.8 0.1 -5.1
D 212.9 0.5 216.0 0.2 1.5
T 69.7 1.7 74.0 0.5 6.1

PM3
S 1091.7 0.2 988.9 0.1 -9.4
D 414.0 0.5 426.0 0.2 2.9
T 133.8 1.3 154.3 0.3 15.3

PERLA PuO2 10
S 250.6 0.1 258.0 0.1 2.9
D 50.6 0.7 51.9 0.3 2.4
T 10.2 1.7 10.2 0.8 -0.4

PERLA PuO2 20
S 654.2 0.1 652.2 0.1 -0.3
D 134.9 0.3 136.0 0.3 0.8
T 29.9 1.3 28.6 0.6 -4.3

PERLA PuO2 21
S 1329.1 0.0 1316.6 0.1 -0.9
D 281.5 0.1 283.1 0.3 0.6
T 66.9 0.4 63.6 0.7 -5.0

PERLA PuO2 22
S 2685.6 0.1 2687.1 0.1 0.1
D 584.0 0.2 582.7 0.3 -0.2
T 147.2 1.3 137.2 0.9 -6.8

PERLA PuO2 23
S 5819.5 0.1 5571.5 0.1 -4.3
D 1205.9 0.3 1218.7 0.3 1.1
T 285.6 0.3 280.2 1.0 -1.9

CBNM 61
S 2287.5 0.2 2216.1 0.1 -3.1
D 393.6 0.2 406.6 0.4 3.3
T 84.0 0.5 93.2 1.0 11.0

CBNM 70
S 1684.0 0.1 1631.5 0.1 -3.1
D 272.4 0.5 279.8 0.4 2.7
T 59.7 1.4 64.4 1.0 7.9

CBNM 84
S 768.4 0.2 779.8 0.1 1.5
D 168.0 0.6 184.1 0.2 9.6
T 35.6 1.8 42.6 0.6 19.9

CBNM 93
S 392.0 0.1 386.2 0.1 -1.5
D 72.7 0.2 80.4 0.2 10.7
T 15.7 0.4 18.8 0.6 19.9

Table B.3: Comparison of measured Singles, Doubles and Triples rates to the corre-
sponding simulated values for all samples including the deviation between
simulation and measurement. Statistical uncertainties are given for the
measured and simulated values.
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Appendix C

The Thermal Neutron Scattering Kernel

A general quantum-mechanical scattering kernel describing the thermal neutron
cross-sections can be derived, as for instance in [54], [55] or [56]. Cross-sections are
obtained by applying Fermi’s Golden Rule (which describes the transition rate from
an initial energy eigenstate of a quantum system to eigenstates after perturbation
by a potential) and the definition of the scattering amplitude f(�k, �k�) which is a
function of the appropriate wave function of the system and the potential of the
scatterer [56, p. 6]:

dσ

dΩ = k�

k
| f(�k, �k�) |2 (C.1)

where �k is the wave vector of the initial and �k� of the final state. In order to calcu-
late the cross-sections, as performed in [54], one would begin with the Schrödinger
equation for the system with appropriate boundary conditions. They are that a sum
of an incoming plane wave and an outgoing spherical wave is obtained at large sep-
arations between neutron and scatterer. Then, the first order Born approximation
is used which replaces the outgoing wave function by a plane-wave wave function,
assuming that the perturbation on the incident wave is small. This assumption is
reasonable as the range of nuclear forces is extremely small compared to the rele-
vant dimensions. Finally, it must be considered that the moderator is in a state
of thermal motion which is described by the Boltzmann distribution. The result of
this derivation is [36]

σ(E → E �, µ) = σb
2kT

�
E �

E
S(αsc, βsc) (C.2)

where E and E � are the incident and final neutron energies, µ is the cosine of the
scattering angle, σb is the bound scattering cross-section which is material-specific
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(see further information in [55, pp. 23]), kT is the thermal energy and S(αsc, βsc) is
the so-called scattering law which depends only on the momentum transfer αsc and
the energy transfer βsc

αsc =
E � + E − 2

√
E �Eµ

BkT
βsc =

E � − E
kT

(C.3)

where B is the ratio of scatterer mass to neutron mass. Therefore, S(αsc, βsc) does
not depend on the incident neutron energies.

The scattering law must be evaluated for the specific scatterer. For crystalline solids,
it can be assumed that the individual atoms in a lattice act as coupled harmonic
oscillators [54], where the vibrations are described by phonons. Energy transfer
corresponds to phonon excitation [36]. For such a system, the scattering law is
expressed as a series showing the contributions of 0, 1, ..., n phonons [36]:

S(αsc, βsc) =exp


−αsc

∞̂

−∞

ρ(β�
sc)

2βsc · sinh(β�
sc/2)

e−β�
sc/2dβ�

sc


 ·

·





∞�

n=0

1
n!α

n
sc

1
2π

∞̂

−∞

eiβsct




∞̂

−∞

ρ(β��
sc)

2β��
sc · sinh(β��

sc/2)
e−β��

sc/2e−iβ��
sctdβ��

sc




n

dt





(C.4)

where β �
sc and β��

sc have the same definition as in equation C.3. ρ(βsc) is the frequency
spectrum of excitations in the system. The thermal cross-sections can be calculated
when the material-specific frequency distribution is known.

Polyethylene consists of long hydrocarbon chains and is partially crystalline. The
coupling between neighboring chains is rather weak so that the spectrum can be
derived from evaluating a single chain [38]. In polyethylene, vibrations come from
stretching, bending, wagging, rocking, torsion and twisting. Nine major modes
corresponding to these types of vibration have been identified. From the frequency
spectrum, the scattering cross-sections can be calculated using the equations given
above. Sprevak and Koppel [38] performed these two steps and their results can be
seen in Fig. C.1 and 4.1.
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Figure C.1: Phonon frequency spectrum for the polyethylene chain used in the neu-
tron calculations, taken from [38]
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Appendix D

Derivation of the Corrected Multiplicity Analysis

The following derivation leads to the solution of equations 5.12 for M , α and F .
First, S is solved for 1 + α, then the result is inserted into D which is solved for F ,
the result is inserted into T :

1 + α = S

F · � ·M · νsf1
(D.1)

=⇒ D =F · �2 · fd ·M2

2

�
νsf2 · g2 + (g3 ·M − g2)

νi2

νi1 − 1

�
S

F · � ·M
��

(D.2)

=⇒ F = 2
�2 · fd ·M2 · νsf2 · g2

�
D − � · fd ·M · νi2 · S

2(νi1 − 1) (g3 ·M − g2)
�

(D.3)

=⇒ 1 + α =� · fd ·M · νsf2 · g2 · S
2νsf1

�
D − � · fd ·M · νi2 · S

2(νi1 − 1) (g3 ·M − g2)
�−1

(D.4)

=⇒ T =
�

1
fd · νsf2 · g2

�
D − � · fd ·M · νi2 · S

2(νi1 − 1) (g3 ·M − g2)
��
� · ft ·M

3 ·

{νsf3 · g3 + (g4 ·M − g3) · νsf1 · νi3

νi1 − 1 ·

� · fd ·M · νsf2 · g2 · S

2νsf1

�
D − � · fd ·M · νi2 · S

2(νi1 − 1) (g3 ·M − g2)
�−1
+

3 · (g4 ·M − g3) · νsf2 · νi2

νi1 − 1 + 3(g5 ·M2 − 2g4 ·M + g3)·

ν2i2
(νi1 − 1)2 · � · fd ·M · νsf2 · g2 · S

2

�
D − � · fd ·M · νi2 · S

2(νi1 − 1) (g3 ·M − g2)
�−1

}

(D.5)

After simplifications and transformations, one obtains
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0 =
�
D − � · fd ·M · νi2 · S

2(νi1 − 1) (g3 ·M − g2)
�−1

·

{−T
�
D − � · fd ·M · νi2 · S

2(νi1 − 1) (g3 ·M − g2)
�
+

�
D · � · ft ·M
3fd · νsf2 · g2

− �2 · ft ·M2 · νi2 · S(M · g3 − g2)
6(νi1 − 1)νsf2 · g2

�
·

{M · � · fd · νsf2 · g2 · νi3 · S(g4 ·M − g3)
2(νi1 − 1) +

3 · g4 · νsf2 · νi2 ·M
νi1 − 1

�
D − � · fd ·M · νi2 · S

2(νi1 − 1) (g3 ·M − g2)
�

−

3g3 · νsf2 · νi2

νi1 − 1

�
D − � · fd ·M · νi2 · S

2(νi1 − 1) (g3 ·M − g2)
�
+

3Mν2i2 · � · fd · νsf2 · g2 · S(g5 ·M2 − 2g4M + g3)
2(νi1 − 1)2 +

νsf3 · g3
�
D − � · fd ·M · νi2 · S

2(νi1 − 1) (g3 ·M − g2)
�
}} (D.6)

After some rearrangement, one arrives at equation 5.17.
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Appendix E

Graphs of the Correction Coefficients
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Figure E.1: g3 as a function of fissile mass for a range of simulations. Dots represent
simulated configurations, the lines are for guiding the eyes only and
connect simulations of the same same rin.

Figure E.2: g4 as a function of fissile mass for a range of simulations. Dots represent
simulated configurations, the lines are for guiding the eyes only and
connect simulations of the same same rin.
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Figure E.3: g5 as a function of fissile mass for a range of simulations. Dots represent
simulated configurations, the lines are for guiding the eyes only and
connect simulations of the same same rin.

Figure E.4: g3 as a function of thickness for a range of simulations. Dots represent
simulated configurations, the lines are for guiding the eyes only and
connect simulations of the same same rin.
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Figure E.5: g4 as a function of thickness for a range of simulations. Dots represent
simulated configurations, the lines are for guiding the eyes only and
connect simulations of the same same rin.

Figure E.6: g5 as a function of thickness for a range of simulations. Dots represent
simulated configurations, the lines are for guiding the eyes only and
connect simulations of the same same rin.
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Figure E.7: g3 as a function of M for a range of simulations. Dots represent simu-
lated configurations, the dotted lines are for guiding the eyes only and
connect simulations of the same same rin, the solid line is an empirical
fit to the rin = 2.0 cm data.

Figure E.8: g4 as a function of M for a range of simulations. Dots represent simu-
lated configurations, the dotted lines are for guiding the eyes only and
connect simulations of the same same rin, the solid line is an empirical
fit to the rin = 2.0 cm data.

107



Figure E.9: g5 as a function of M for a range of simulations. Dots represent simu-
lated configurations, the dotted lines are for guiding the eyes only and
connect simulations of the same same rin, the solid line is an empirical
fit to the rin = 2.0 cm data.
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